Sains Malaysiana 44(9)(2015): 1339–1350
Kesan
Penuaan ke atas Kehubungan Berkesan Otak semasa Pemprosesan Ingatan Bekerja
daripada Perspektif Pemodelan Sebab dan Akibat Dinamik
(The
Effect of Ageing on Brain Effective Connectivity during Working Memory
Processing
from the Perspective of Dynamic
Causal Modelling)
HANANI ABDUL
MANAN1,2, AHMAD NAZLIM
YUSOFF1*
& SITI ZAMRATOL-MAI
SARAH
MUKARI3
1Program Pengimejan
Diagnostik & Radioterapi, Pusat Pengajian Sains Diagnostik dan Kesihatan
Gunaan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz
50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
2Pusat
Perkhidmatan dan Penyelidikan Neurosains (P3NEURO), Kampus Kesihatan,
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
3Program
Audiologi, Pusat Pengajian Sains Rehabilitasi, Fakulti Sains Kesihatan,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,
Wilayah Persekutuan
Malaysia
Diserahkan:
8 Januari 2015/Diterima: 25 Mei 2015
ABSTRAK
Proses penuaan seringkali dikaitkan dengan kemerosotan sistem kognitif.
Kemerosotan tersebut bermula seawal usia
dua puluhan dan berterusan secara linear. Walau
bagaimanapun, kesan penuaan ke atas ciri kehubungan antara kawasan
otak masih belum difahami. Dalam kajian
ini, pengimejan resonans magnet kefungsian (fMRI)
digunakan untuk mengkaji kesan penuaan ke atas kehubungan otak yang
terhasil daripada tugasan mengulang secara terbalik (BRT).
Subjek normal dalam empat kumpulan umur iaitu 20-29 tahun (n=14), 30-39 tahun (n=14), 40-49 tahun
(n=10) dan 50-65 tahun (n=14) mengambil bahagian dalam
kajian ini. Stimulus BRT terdiri daripada satu siri lima
perkataan yang diberi secara auditori. Pemetaan statistik berparameter
(SPM)
dan pemodelan sebab dan akibat dinamik (DCM) digunakan untuk menentukan
pengaktifan dan kehubungan otak. Sebanyak 200 model kehubungan intrahemisfera
dan 150 interhemisfera dibina bagi menguji kewujudan gandingan antara
girus temporal superior (STG), girus Heschl (HG),
talamus (TH) dan girus presentral (PCG)
kesemua subjek. Keputusan DCM menunjukkan subjek keempat-empat
kumpulan umur menggunakan kehubungan intrahemisfera yang sama
semasa tugasan BRT. Kehubungan interhemisfera pula didapati
berubah menjadi semakin kompleks apabila usia
meningkat. Perubahan tersebut didapati bermula pada usia
40 tahun. Keputusan ini menyokong penemuan terdahulu
bahawa penuaan menyebabkan perubahan pada sistem neuron otak seterusnya
mempengaruhi pemprosesan kognitif.
Kata kunci: DCM; fungsi eksekutif pusat; fMRI;
kehubungan efektif; pemprosesan auditori; penuaan
ABSTRACT
Ageing process is often associated with cognitive system
declination. The decline begins as early as in the twenties and continues
linearly. However, the effects of ageing on connectivity charactersistics
between the brain areas have yet to be understood. In the present study,
functional magnetic resonance imaging (fMRI) was used to investigate
the effects of ageing on brain connectivity resulting from the backward repeat
task (BRT). Normal participants with four age groups which were
20-29 years (n=14), 30-39 years (n=14),
40-49 years (n=10) and 50-65 years (n=14) participated in this
study. The BRT stimulus consisted of a series of five words given
auditorily. Statistical parametric mapping (SPM)
and dynamic causal modeling (DCM) was used to determine
brain activation and connectivity. Two-hundred intrahemispheric and 150
interhemispheric connectivity models were constructed to test the existence of
coupling between superior temporal gyrus (STG),
Heschl’s gyrus (HG), thalamus (TH)
and precentral gyrus (PCG) on all subjects. DCM results
showed that participants from the four age groups used the same
intrahemispheric connectivity during BRT task. The interhemipheric connectivity
changed and became more complex with ageing. The change was found to start at
the age of 40. This result supports previous finding that ageing causes changes
in the brain neuronal system and consequently affects cognitive processing.
Keywords: Ageing; auditory
processing; central executive function; DCM; effective
connectivity; fMRI
RUJUKAN
Abdul Manan, H., Yusoff,
A.N., Franz, E.A. & Sarah Mukari, S.Z. 2013. Early and late shift of brain laterality in
STG, HG, and cerebellum with normal aging during a short-term memory task. ISRN Neurol 2013: 892072.
Alexander, M.P., Gillingham, S.,
Schweizer, T. & Stuss, D.T. 2012. Cognitive
impairments due to focal cerebellar injuries in adults. Cortex 48(8):
980-990.
Baddeley, A. 2003a. Working memory and language: An overview. J. Commun.
Disord. 36(3): 189-208.
Baddeley, A. 2003b. Working memory: Looking back and looking forward. Nat.
Rev. Neurosci. 4(10): 829-839.
Baddeley, A. 2000. The episodic buffer: A new component of working memory? Trends
Cogn. Sci. 4(11): 417-423.
Bayliss, D.M., Jarrold, C., Gunn, D.M.
& Baddeley, A.D. 2003. The complexities of complex span: Explaining
individual differences in working memory in children and adults. J. Exp.
Psychol. Gen. 132(1): 71-92.
Brett, M., Johnsrude,
I.S. & Owen, A.M. 2002. The problem of functional localization in the human brain. Nat.
Rev. Neurosci. 3(3): 243-249.
Burton, M.W. & Small, S.L. 2006. Functional neuroanatomy of segmenting speech and nonspeech. Cortex 42(4): 644-651.
Cabeza, R. 2002. Hemispheric asymmetry
reduction in older adults: The HAROLD model. Psychol. Aging 17(1):
85-100.
Cabeza, R., Daselaar,
S.M., Dolcos, F., Prince, S.E., Budde, M. & Nyberg, L. 2004. Task-independent and task-specific age effects on brain
activity during working memory, visual attention and episodic retrieval. Cereb
Cortex 14(4): 364-375.
Cabeza, R., Dolcos,
F., Prince, S.E., Rice, H.J., Weissman, D.H. & Nyberg, L. 2003. Attention-related activity during episodic memory
retrieval: A cross-function fMRI study. Neuropsychologia 41(3): 390-399.
Cabeza, R., Anderson,
N.D., Locantore, J.K. & McIntosh, A.R. 2002. Aging gracefully: Compensatory brain activity in high-performing
older adults. Neuroimage 17(3): 1394-1402.
Choi, H.J., Lee, D.Y., Seo, E.H., Jo,
M.K., Sohn, B.K., Choe, Y.M., Byun, M.S., Kim, J.W., Kim, S.G., Yoon, J.C.,
Jhoo, J.H., Kim, K.W. & Woo, J.I. 2014. A normative study
of the digit span in an educationally diverse elderly population. Psychiatry
Investig. 11(1): 39-43.
Desmond, J.E. & Glover, G.H. 2002.
Estimating sample size in functional MRI (fMRI) neuroimaging studies:
Statistical power analyses. Journal of Neuroscience Methods
118: 115-128.
Dew, I.T., Buchler,
N., Dobbins, I.G. & Cabeza, R. 2012. Where is ELSA? The early to late shift in aging. Cereb
Cortex 22(11): 2542-2553.
Dolcos, F., Rice,
H.J. & Cabeza, R. 2002. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry
reduction. Neurosci. Biobehav. Rev. 26(7): 819-825.
Dos Santos Sequeira,
S., Specht, K., Hamalainen, H. & Hugdahl, K. 2008. The effects of background noise on dichotic listening to
consonant-vowel syllables. Brain Lang. 107(1): 11-15.
Eickhoff, S.B.,
Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K. & Zilles,
K. 2005. A new SPM toolbox
for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4): 1325-1335.
Folstein, M.F., Folstein, S.E. &
McHugh, P.R. 1975. Mini-mental state: A practical method for grading the
cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3):
189-198.
Friston, K.J., Harrison, L. &
Penny, W. 2003. Dynamic causal modelling. Neuroimage 19(4): 1273-1302.
Hall, D.A., Haggard, M.P., Akeroyd,
M.A., Palmer, A.R., Summerfield, A.Q., Elliott, M.R., Gurney, E.M. &
Bowtell, R.W. 1999. “Sparse” temporal sampling in auditory
fMRI. Hum. Brain Mapp. 7(3): 213-223.
Hammers, A., Koepp, M.J., Free, S.L.,
Brett, M., Richardson, M.P., Labbe, C., Cunningham, V.J., Brooks, D.J. &
Duncan, J. 2002. Implementation and application of a brain
template for multiple volumes of interest. Hum. Brain Mapp. 15(3):
165-174.
Harding, I.H., Yücel,
M., Harrison, B.J., Pantelis, C. & Breakspear, M. 2015. Effective connectivity within the frontoparietal control
network differentiates cognitive control and working memory. Neuroimage 106(0):
144-153.
Heilbronner, R.L.,
Henry, G.K., Buck, P., Adams, R.L. & Fogle, T. 1991. Lateralized brain damage and performance
on trail making A and B, digit span forward and backward, and TPT memory and
location. Arch. Clin. Neuropsychol. 6(4): 251-258.
Ivanova, M.V. & Hallowell, B. 2014.
A new modified listening span task to enhance validity of working memory
assessment for people with and without aphasia. Journal of Communication
Disorders 52(0): 78-98.
Maldjian, J.A., Laurienti, P.J., Kraft,
R.A. & Burdette, J.H. 2003. An automated method for
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data
sets. Neuroimage 19(3): 1233-1239.
Manan, H.A., Franz,
E.A., Yusoff, A.N. & Mukari, S.Z. 2015. The effects of aging on the brain activation pattern during
a speech perception task: An fMRI study. Aging Clin Exp Res. 27(1):
27-36.
Manan, H.A., Franz,
E.A., Yusoff, A.N. & Mukari, S.Z.M.S. 2013. Age-related laterality shifts in auditory and attention
networks with normal ageing: Effects on a working memory task. Neurology
Psychiatry and Brain Research 19(4): 180- 191.
Manan, H.A., Franz,
E.A., Yusoff, A.N. & Mukari, S.Z.M. S. 2012. Hippocampal-cerebellar involvement in enhancement of
performance in word-based BRT with the presence of background noise: An initial
fMRI study. Psychology and Neuroscience 5(2): 247-256.
Matilainen, L.E., Talvitie, S.S.,
Pekkonen, E., Alku, P., May, P.J. & Tiitinen, H. 2010. The effects of
healthy aging on auditory processing in humans as indexed by transient brain
responses. Clin. Neurophysiol. 121(6): 902-911.
Mitchell, K.J.,
Johnson, M.K., Raye, C.L. & D’Esposito, M. 2000. fMRI evidence of age-related
hippocampal dysfunction in feature binding in working memory. Brain Res.
Cogn. Brain Res. 10(1-2): 197-206.
Oldfield, R.C. 1971. The assessment and
analysis of handedness: The Edinburgh inventory. Neuropsychologia 9(1):
97-113.
Resnick, S.M., Goldszal, A.F.,
Davatzikos, C., Golski, S., Kraut, M.A., Metter, E.J., Bryan, R.N. &
Zonderman, A.B. 2000. One-year age changes in MRI brain volumes in older
adults. Cerebral Cortex 10(5): 464-472.
Reuter-Lorenz, P. 2002. New visions of the aging mind and brain. Trends Cogn.
Sci. 6(9): 394.
Reuter-Lorenz, P.A.,
Jonides, J., Smith, E.E., Hartley, A., Miller, A., Marshuetz, C. & Koeppe,
R.A. 2000. Age differences in the frontal
lateralization of verbal and spatial working memory revealed by PET. J.
Cogn. Neurosci. 12(1): 174-187.
St Jacques, P.L.,
Rubin, D.C. & Cabeza, R. 2012. Age-related effects on the neural correlates of autobiographical
memory retrieval. Neurobiol. Aging 33(7): 1298-1310.
Stephan, K.E., Penny, W.D., Moran,
R.J., den Ouden, H.E., Daunizeau, J. & Friston, K.J. 2010. Ten simple rules for dynamic causal modeling. Neuroimage 49(4):
3099-3109.
Stephan, K.E., Penny,
W.D., Daunizeau, J., Moran, R.J. & Friston, K.J. 2009. Bayesian model selection for group
studies. Neuroimage 46(4): 1004-1017.
Ting, S.K., Hameed, S., Tan, E.K.,
Gabriel, C. & Doshi, K. 2014. Digit span: A comparison of Chinese
versus alphabetic language speakers in dysexecutive dementia patients. J.
Neurol. Neurosurg. Psychiatry 85(1): 117-118.
Wilckens,
K.A., Erickson, K.I. & Wheeler, M.E. 2012. Age-related decline in
controlled retrieval: The role of the PFC and sleep. Neural Plast. 2012:
624795.
Yusoff,
A.N., Manan, H.A., Mukari, S.Z.S., Hamid, K.A. & Franz, E.A. 2014. Brain activation and psychophysiologic interaction in association
with a phonological working memory task. Modern Applied Science 8(5):
97-114.
Yusoff, A.N., Mohamad, M., Hamid, K.A., Abd Hamid, A.I.
& Mukari, S.Z.M.S. 2011. Acquisition, analyses and
interpretation of fMRI data: A study on the effective connectivity in human
primary auditory cortices. Sains Malaysiana 40(6): 665-678.
*Pengarang
untuk surat-menyurat; email: nazlimtrw@ukm.edu.my
|