Sains Malaysiana 44(9)(2015): 1357–1362
Photoluminescence Characteristic of Magnesium Boro-Tellurite doped
Eu3+ Ceramic
(Ciri Fotoluminesens bagi Magnesium Boro-Telurit dop Seramik Eu3+)
NUR ZU IRA BOHARI1, R. HUSSIN1*, ZUHAIRI IBRAHIM1 & HENDRIK O. LINTANG2
1Phosphor Research
Group, Department of Physics, Faculty of Science, University Teknologi Malaysia,
81310 Skudai, Johor Darul Takzim, Malaysia
2Ibnu Sina Institute
for Fundamental Science Studies, 81310 Skudai, Johor Darul Takzim, Malaysia
Diserahkan: 23 Oktober 2014/Diterima: 5 Mei 2015
ABSTRACT
The series samples of xTeO2-(70-x)B2O3-30MgO
with 0≤x≤30 mol% have been prepared via the solid-state reaction method.
The composition sample of 30TeO2-40B2O3-30MgO
were chosen as a doped sample in the composition of 100-y(30TeO2-40B2O3-30MgO)-yEu3+ with
0.2≤y≤2 mol% and were heated at 750oC.
The XRD results showed that the major phase was Mg(Te2O5)
while MgO(B2O3)2,
MgTe6O13, Mg2(B2O5)
and MgB4O7 was
observed as a minor phase. The small phase of EuB2O4 and
Eu2Te4O11 were
detected by XRD when the composition of 30TeO2-40B2O3-30MgO
were doped with 1.5% of Eu3+. The EDX analysis
of 30TeO2-40B2O3-30MgO
doped with 1.5% Eu3+ sample
was confirmed the presence of boron (B), magnesium (Mg), tellurium (Te), oxygen
(O) and europium (Eu) elements. From the FESEM images, the surface
morphology of doped 1.5% Eu3+ samples
was agglomerated compared with the undoped sample. The average diameter of the
grain size is in the range of 50-100 μm. The emission spectra of the Eu3+-doped
30TeO2-40B2O3-30MgO
ceramic consists of intense and sharp lines ranging from 550-725 nm. The
luminescence spectra showed that the emission intensity of 30TeO2-40B2O3-30MgO
doped with Eu3+ was
enhanced with the increase of Eu3+ ion
from 0.2 to 1.5 mol%, which resulted in enhancement of the red emission of the
samples. The longest decay time for 30TeO2-40B2O3-30MgO
doped with 1.5 mol % Eu3+ was
0.892 ms.
Keywords: Decay curve; magnesium boro-tellurite; photoluminescence
ABSTRAK
Siri sampel bagi xTeO2-(70-x)B2O3-30MgO
dengan 0≤x≤30 mol% telah disediakan melalui kaedah tindak balas keadaan
pepejal. Sampel dengan komposisi 30TeO2-40B2O3-30MgO
telah dipilih sebagai sampel dop berkomposisi 100-y(30TeO2-40B2O3-30MgO)-yEu3+ dengan
0.2≤y≤2 mol% dan telah dipanaskan pada suhu 750oC.
Keputusan XRD menunjukkan fasa major adalah Mg(Te2O5)
manakala MgO(B2O3)2.
MgTe6O13, Mg2(B2O5)
and MgB4O7 dilihat
sebagai fasa minor. Fasa yang kecil bagi Dy(BO2)3,
Dy2Te4O11,
EuB2O4 and
Eu2Te4O11 telah
dikesan oleh XRD pada komposisi 30TeO2-40B2O3-30MgO
dop 1.5% Eu3+. Analisis EDX bagi
sampel 30TeO2-40B2O3-30MgO
dop 1.5% Eu3+ menunjukkan
unsur boron (B), magnesium (Mg), telurium (Te), oksigen (O) dan europium (Eu). Daripada imej FESEM, morfologi permukaan bagi sampel
dop adalah bergumpal berbanding dengan sampel tidak didop. Diameter purata bagi saiz butiran adalah dalam lingkungan 50-100
μm. Spektrum pancaran bagi Eu3+-dop
30TeO2-40B2O3-30MgO
seramik terdiri garisan yang jelas dan tajam pada julat 550-725 nm. Spektra
luminesens menunjukkan keamatan pancaran bagi 30TeO2-40B2O3-30MgO
dop dengan Eu3+ meningkat
dengan peningkatan ion Eu3+ daripada
0.2 ke 1.5 mol%, menunjukkan peningkatan pancaran merah pada sampel tersebut.
Masa pereputan yang paling lama apabila didopkan dengan 1.5 mol% Eu3+ pada
komposisi 30TeO2-40B2O3-30MgO
adalah 0.892 ms.
Kata kunci: Fotoluminesens; lengkung pereputan;
magnesium boro-telurit
RUJUKAN
Babu, P., Seo, H.J., Jang, K.H., Kumar,
K.U. & Jayasankar, C.K. 2007. Optical
spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped
metaphosphate laser glasses. Journal of the Optical Society of America B 24(9):
2218-2228.
Blasse, G. & Grabmaier, B.C. 1994. Luminescence
Materials. Berlin: Springer-Verlag.
Cheng, L.Y., Dan, P.G., Fei, W., Ming, Y.Z., Ai, L.Z., Xiao,
Y.L., Ying, X.L., Xin, Y.L., Hai, B.B. & Yu, L.P. 2014. On the luminescent
properties of Dy3+:β-Li2TiO3 omment on ‘Synthesis and emission analysis of
RE3+ (Eu3+ or
Dy3+): Li2TiO3 ceramics’. Ceramics
International 40: 11465-11467.
Cui, R., Deng, C., Gong, X., Li, X. & Zhou, J. 2013.
Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor. Journal of Rare Earths 31(6):
546-550.
Elfayoumi, M.A.K., Farouk, M., Brik,
M.G. & Elokr, M.M. 2010. Spectroscopic studies of Sm3+ and
Eu3+ co-doped lithium borate glass. J. Alloys Compd. 492(1-2): 712-716.
Fang, T.H., Hsiao, Y.J., Chang, Y.S.
& Chang, Y.H. 2006. Photoluminescent
characterization of KNbO3:Eu3+. Materials Chemistry and Physics 100: 418-422.
Joshi, P., Shen, S. & Jha, A. 2008. Er3+-doped
boro-tellurite glass for optical amplification in the 1530-1580 nm. Journal
of Appl. Phys. 103(8): 083543.
Kumar, G.B. & Buddhudu, S. 2009. Synthesis and emission
analysis of RE3+ (Eu3+ or
Dy3+): Li2TiO3 ceramics. Ceramics
International 35: 521-525.
Kunimoto, T., Honma, T., Ohmi, K., Okubo, S. & Ohta, H.
2013. Detailed impurity phase investigation by X-ray absorption fine structure
and electron spin resonance analyses in synthesis of CaMgSi2O6: eu phosphor. Japanese Journal of
Applied Physics 52: 042402.
Li, S., Xu, D., Shen, H., Zhou, J.
& Fan, Y. 2012. Synthesis
and Raman properties of magnesium borate micro/nanorods. Materials
Research Bulletin 47: 3650-3653.
Lupei, V., Lupei, A. & Ikesue, A.
2005. Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl.
Phys. Lett. 86: 111-118.
Meng, F.G., Zhang, X.M., Li, H. & Seo, H.J. 2012.
Synthesis and spectral characteristics of La2MoO6: Ln3+ (Ln=Eu,
Sm, Dy, Pr, Tb) polycrystals. J. Rare Earths 30(9): 866-870.
Mohr, D., Andrea, S.S., Camargo, D., Schneider, J.F.,
Quieroz, T.B., Eckert, H., Botero, E.R., Garcia, D. & Eiras, J.A. 2008.
Solid state NMR as a new approach for the structural characterization of rare
earth doped lead lanthanum Zirconate titanate laser ceramics. Solid State
Sci. 10: 1401-1407.
Oikawa, M. & Fujihara, S. 2005. Sol-gel preparation and
luminescence properties of CeO2: Ln
(Ln = Eu3+ and Sm3+)
thin films. Journal of European Ceramic Society 25: 2921- 2924.
Rao, B.V., Rambabu, U. & Buddhudu, S. 2008.
Photoluminescence spectral analysis of Eu3+:
Phosphors. Physica B 382: 86-91.
Sun, Y.H. & Fu, Y.X. 2012. Synthesis and characteristics of nano-size sandwich
structure (Y,Gd)BO3:
Eu3+ phosphors. J. Luminescence 132:
550-557.
Tian, Y., Qi, X., Wu, X., Hu, R. & Chen, B. 2009.
Luminescent properties of Y2(MoO4)3:Eu3+ red
phosphors with flowerlike shape prepared via co-precipitation method. J.
Phys. Chem. C 113: 10767-10772.
Visser, O., Visscher, L., Aerts, P.J.C.
& Nieuwpoort, W.C. 1992. Molecular open shell configuration interaction calculations using the
Dirac-Coulomb Hamiltonian: The f6-manifold of an embedded EuO69-cluster. J. Chem. Phys. 96(4):
2910.
Yanmin, Y., Baojiu, C., Cheng, W., Guozhong, R. &
Xiaojun, W. 2007. Investigation of modification effect of B2O3 component on
optical spectroscopy of Er3+ doped
tellurite glasses. J. Rare Earths 25(1): 31-35.
*Pengarang
untuk surat-menyurat; email: roslihussin@utm.my
|