Sains Malaysiana 44(9)(2015): 1363–1370
Statistical
Analysis of Vehicle Theft Crime in Peninsular Malaysia using Negative Binomial
Regression Model
(Analisis
Statistik Jenayah Kecurian Kenderaan di Semenanjung Malaysia menerusi Model
Regresi Binomial Negatif)
MALINA ZULKIFLI1, AHMAD MAHIR RAZALI2*, NURULKAMAL MASSERAN2 & NORISZURA ISMAIL2
1School of
Quantitative Sciences, College of Arts and Science, Universiti Utara Malaysia
06010
Sintok, Kedah Darul Aman, Malaysia
2School of
Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
17 Jun 2014/Diterima: 20 Mei 2015
ABSTRACT
The aim of this paper was to identify the determinants that
influence vehicle theft by applying a negative binomial regression model. The
identification of these determinants is very important to policy-makers,
car-makers and car owners, as they can be used to establish practical steps for
preventing or at least limiting vehicle thefts. In addition, this paper also
proposed a crime mapping application that allows us to identify the most risky
areas for vehicle theft. The results from this study can be utilized by local
authorities as well as management of internal resource planning of insurance
companies in planning effective strategies to reduce vehicle theft. Indirectly,
this paper has built ingenuity by combining information obtained from the
database of Jabatan Perangkaan Malaysia and insurance companies to pioneer the
development of location map of vehicle theft in Malaysia.
Keywords: Crime; mapping; negative binomial; spatial analysis;
vehicle theft
ABSTRAK
Tujuan penulisan kertas ini adalah untuk mengenal
pasti penentu yang mempengaruhi kecurian kenderaan dengan menggunakan model
regresi binomial negatif. Pengenalpastian penentu ini penting kepada
pembuat dasar, pembuat kereta dan pemilik kereta kerana maklumat ini boleh
digunakan untuk mewujudkan langkah-langkah praktikal dalam mencegah atau
sekurang-kurangnya menghadkan kejadian kecurian kenderaan. Di samping itu, kertas ini juga mencadangkan suatu aplikasi
pemetaan jenayah yang membolehkan kita mengenal pasti kawasan yang paling
berisiko untuk berlakunya kecurian kenderaan. Hasil
daripada kajian ini boleh digunakan oleh pihak berkuasa tempatan dan juga pihak
pengurusan perancangan sumber dalaman syarikat insurans untuk merancang
strategi yang berkesan bagi mengurangkan kecurian kenderaan. Secara tidak langsung, kertas kerja ini telah membina satu jalan
pintar dengan menggabungkan maklumat yang diperoleh daripada pangkalan data
Jabatan Perangkaan Malaysia dan syarikat-syarikat insurans untuk merintis
kepada pembinaan peta lokasi kecurian kenderaan di Malaysia.
Kata kunci: Analisis
reruang; binomial negatif; jenayah; kecurian kenderaan; pemetaan
RUJUKAN
Aitkin, M., Anderson, D.,
Francis, B. & Hinde, J. 1990. Statistical Modelling in GLIM. New York: Oxford University Press.
Beime, P. 1993. Inventing Criminology.
Albany, NY: State University of New York Press.
Brockmann, M.J. & Wright, T.S. 1992.
Statistical motor rating: making effective use of your data. Journal of the
Institute of Actuaries 119(3): 457-543.
Cameron, A.C. & Trivedi, P.K. 1986.
Econometric models based on count data: Comparisons and applications of some
estimators and tests. Journal of Applied Econometrics 1: 29-53.
Consul, P.C. 1989. Generalized Poisson Distribution:
Properties and Application. New York: Marcel Dekker.
Consul, P.C. & Famoye,
F. 1992. Generalized
Poisson regression model. Communications in Statistics (Theory &
Methodology) 2(1): 89-109.
Demombynes, G. & Ozler, B. 2005. Crime and local inequality in South Africa. Journal of
Development Economics 76: 265-292.
Di Tella, R. & Schargrodsky, E. 2004. Do
police reduce crime? Estimates using the allocation of police
forces after a terrorist attack. The American Economic Review 94(1):
115-133.
Hengl, T. 2007. A Practical
Guide to Geostatistical Mapping of Environmental Variables. Italy:
European Communities.
Insurance Services
Malaysia Bhd. 2007. Insurance industry statistics on stolen vehicles. http://www.piam.org.my/news/ piamnews/p014.htm. Accessed 22 June 2011.
Ismail, N. & Jemain, A.A. 2007. Handling overdispersion
with negative binomial and generalized Poisson regression models. Casualty Actuarial Society Forum Winter. pp.
103-158.
Kelly, M. 2000. Inequality and crime. The Review of Economics and Statistics 82(4): 530-539.
Kenwitz, J.W. 1987. Cartography in France: 1660-1848.
Chicago, IL: University of Chicago Press.
Kleck, G. & Chiricos, T, 2002. Unemployment and property
crime: A target-specific assessment of opportunity and motivation as mediating
factors. Criminology 40(3): 649-680.
Lawless, J.F. 1987. Negative binomial and mixed Poisson
regression. Canadian Journal of Statistics 15(3): 209-225.
Masseran, N., Razali, A.M. &
Ibrahim, K. 2012a. An analysis of wind power density
derived from several wind speed density functions: The regional assessment on
wind power in Malaysia. Renewable and Sustainable Energy Reviews 16(8):
6476-6487.
Masseran, N., Razali, A.M., Ibrahim,
K., Zin, W.Z.W. & Zaharim, A. 2012b. On spatial analysis of wind energy potential in Malaysia. WSEAS
Transactions on Mathematics 11(6): 467-477.
McCullagh, P. & Nelder, J.A. 1989. Generalized Linear
Models. 2nd ed. London: Chapman and Hall.
Osgood, W. 2000. Poisson-based regression analysis of aggregate crime rates. Journal of Quantitative Criminology 16: 21-43.
Renshaw, A.E. 1994. Modelling the claims process in the
presence of covariates. ASTIN Bulletin 24(2): 265-285.
Schabenberger, O. & Gotway, C.A. 2005. Statistical Methods for Spatial Data Analysis. Boca
Raton: Chapman & Hall/ CRC Press.
Sidhu, A.S. 2005. The rise of crime in Malaysia: An academic
and statistical analysis. Journal of the Kuala Lumpur Royal Malaysia Police
College 4: 1-28.
Wang, W. & Famoye, F. 1997. Modeling household fertility decisions with generalized
Poisson regression. Journal of Population Economics 10: 273-283.
Weisburd, D. & McEwen, T. 1997. Introduction: Crime Mapping and Crime Prevention.
Monsey, NY: Criminal Justice Press.
Zamani, H. & Ismail, N. 2012. Functional
form for the generalized Poisson regression model. Communications in
Statistics - Theory and Methods 41(20): 3666-3675.
Zamani, H. & Ismail, N. 2014. Functional form for the
zero-inflated generalized Poisson regression model. Communications in
Statistics - Theory and Methods 43(3): 515-529.
Zulkifli, M., Ismail, N. & Razali,
A.M. 2013. Analysis of vehicle theft: A case
study in Malaysia using functional forms of negative binomial regression
models. Applied Mathematics and Information Sciences 7(2L): 389-395.
*Pengarang
untuk surat-menyurat; email: mahir@ukm.edu.my
|