Sains Malaysiana 45(11)(2016): 1625–1633
Evaluation Performance
of Time Series Approach for Forecasting Air Pollution Index in
Johor
(Penilaian
Prestasi Pendekatan
Siri Masa untuk Peramalan
Indeks Pencemaran Udara di Johor)
NUR HAIZUM
ABD
RAHMAN1,
MUHAMMAD
HISYAM
LEE1*,
SUHARTONO2
& MOHD
TALIB
LATIF3
1Department of Mathematical
Sciences, Universiti Teknologi
Malaysia, 81310 Johor Bahru,
Johor, Darul Takzim, Malaysia
2Department of Statistics,
Institut Teknologi
Sepuluh Nopember,
60111 Surabaya
Indonesia
3School of Environmental
and Natural Resource Sciences, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 5 Oktober 2015/Diterima: 17 Mac 2016
ABSTRACT
The air pollution index (API)
has been recognized as one of the important air quality indicators
used to record the correlation between air pollution and human
health. The API
information can help government agencies, policy
makers and individuals to prepare precautionary measures in order
to eliminate the impact of air pollution episodes. This study
aimed to verify the monthly API trends
at three different stations in Malaysia; industrial, residential
and sub-urban areas. The data collected between the year 2000
and 2009 was analyzed based on time series forecasting. Both classical
and modern methods namely seasonal autoregressive integrated moving
average (SARIMA)
and fuzzy time series (FTS) were employed. The model developed
was scrutinized by means of statistical performance of root mean
square error (RMSE). The results showed a good performance of SARIMA
in two urban stations with 16% and 19.6% which was
more satisfactory compared to FTS; however, FTS performed
better in suburban station with 25.9% which was more pleasing
compared to SARIMA
methods. This result proved that classical method
is compatible with the advanced forecasting techniques in providing
better forecasting accuracy. Both classical and modern methods
have the ability to investigate and forecast the API trends in which can be considered as an effective decision-making
process in air quality policy.
Keywords: Air pollution index;
ARIMA; forecasting; fuzzy time series; time series
ABSTRAK
Indeks pencemaran udara
(IPU)
penting sebagai
petunjuk asas kualiti
udara yang berkait
rapat antara pencemaran
udara dan
kesihatan manusia. Maklumat IPU
boleh membantu agensi kerajaan, penggubal dasar serta orang perseorangan untuk menyediakan langkah berjaga-jaga untuk mengatasi pencemaran udara. Kajian ini bertujuan untuk
menganalisis trend IPU bulanan di tiga buah stesen yang berbeza di Malaysia; industri, perumahan dan pinggir
bandar. Data
antara tahun 2000 dan 2009 telah dianalisis berdasarkan siri ramalan masa. Kedua-dua kaedah klasik dan moden
iaitu autoregresif
bermusim bersepadu purata (SARIMA) dan
siri masa kabur
(FTS)
telah diaplikasikan.
Model ramalan dibandingkan
melalui prestasi
statistik punca min ralat kuasa dua
(RMSE).
Hasil kajian
menunjukkan SARIMA meramal
dengan baik
di dua stesen bandar
dengan 16% dan
19.6% yang lebih memuaskan berbanding FTS; Walau
bagaimanapun, ramalan
FTS
lebih baik di stesen
pinggir bandar
dengan 25.9% lebih tepat berbanding dengan kaedah SARIMA.
Keputusan ini
membuktikan bahawa kaedah klasik mampu
meramal dengan
baik standing dengan teknik ramalan yang moden. Kedua-dua kaedah klasik dan
moden mempunyai
keupayaan untuk mengkaji dan meramal
trend IPU dan boleh
membantu dalam
proses membuat keputusan yang berkesan dalam membentuk dasar kualiti udara.
Kata kunci: ARIMA;
indeks pencemaran
udara; ramalan; siri masa; siri masa kabur
RUJUKAN
Afroz, R.,
Hassan, M.N. & Ibrahim, N.A. 2003. Review of air pollution
and health impacts in Malaysia. Environmental Research 92(2):
71-77.
Brunelli, U., Piazza, V., Pignato,
L., Sorbello, F. & Vitabile,
S. 2007. Two-days ahead prediction of
daily maximum concentrations of SO2, O3, PM10, NO2, CO in the
urban area of Palermo, Italy. Atmospheric Environment 41(14):
2967-2995.
Chaloulakou, A.,
Saisana, M. & Spyrellis,
N. 2003. Comparative assessment of neural networks and
regression models for forecasting summertime ozone in Athens.
Science of The Total Environment 313(1-3):
1-13.
Chen,
S.M. 1996. Forecasting enrollments based on fuzzy time series.
Fuzzy Sets and Systems 81(3): 311-319.
Cheng, C.H., Chen, T.L., Teoh, H.J. & Chiang, C.H. 2008. Fuzzy
time-series based on adaptive expectation model for TAIEX forecasting.
Expert Systems with Applications 34(2): 1126-1132.
Cryer, J.D. 1986. Time
Series Analysis. 1st ed. United States of America:
Duxbury Press.
Department of Environment (DoE). 2011.
Malaysia Environment Quality Report 2010. Putrajaya: Department
of Environment, Ministry of Sciences, Technology and Environment,
Malaysia.
Department of Environment (DoE). 2005.
Malaysia Environment Quality Report 2004. Putrajaya: Department
of Environment, Ministry of Sciences, Technology and Environment,
Malaysia.
Hanke, J.E.
& Wichern, D.W. 2005. Business
Forecasting. 8th ed. Upper Saddle River, N.J: Pearson/Prentice
Hall.
Hassanzadeh, S.,
Hosseinibalam, F. & Alizadeh,
R. 2009. Statistical models and time series forecasting of sulfur dioxide:
A case study Tehran. Environmental Monitoring and Assessment
155(1): 149-155.
Heo,
J.S. & Kim, D.S. 2004. A new method of ozone forecasting using fuzzy expert and neural
network systems. Science of the Total Environment 325(1-3):
221-237.
Huarng,
K. 2001. Effective lengths of intervals to improve
forecasting in fuzzy time series. Fuzzy Sets and Systems
123(3): 387-394.
Khashei,
M. & Bijari, M. 2010. An artificial neural network (p, d, q) model for time series forecasting.
Expert Systems with Applications 37(1): 479-489.
Kumar, A. &
Goyal, P. 2011. Forecasting of daily air quality
index in Delhi. Science of the Total Environment 409(24):
5517-5523.
Kumar,
U. & Jain, V. 2010. ARIMA forecasting of ambient air
pollutants (O3, NO, NO2 and CO). Stochastic Environmental
Research and Risk Assessment 24(5): 751-760.
Kurt,
A. & Oktay, A.B. 2010. Forecasting air pollutant indicator levels with geographic models
3 days in advance using neural networks. Expert Systems
with Applications 37(12): 7986-7992.
Makridakis, S., Chatfield,
C., Hibon, M., Lawrence, M., Mills,
T., Ord, K. & Simmons, L.F. 1993. The M2-competition: A real-time
judgmentally based forecasting study. International Journal
of Forecasting 9(1): 5-22.
Makridakis, S., Andersen,
A., Carbone, R., Fildes, R., Hibon,
M., Lewandowski, R., Newton, J., Parzen,
E. & Winkler, R. 1982. The accuracy of extrapolation (time
series) methods: Results of a forecasting competition. Journal
of Forecasting 1(2): 111-153.
Muhammad Hisyam Lee, Nur Haizum Abd Rahman, Suhartono, Mohd Talib Latif, Maria Elena Nor &
Nur Arina Bazilah
Kamisan. 2012. Seasonal ARIMA for forecasting air pollution
index: A case study. American Journal of Applied Sciences 9(4):
570-578.
Nurulilyana Sansuddin, Nor Azam Ramli, Ahmad
Shukri Yahaya, Noor Faizah Fitri Md Yusof, Ghazali & Wesam Ahmed Al Madhoun. 2011. Statistical
analysis of PM10 concentrations at different locations in Malaysia.
Environmental Monitoring and Assessment 180(1): 573-588.
Nurul Adyani Ghazali, Nor Azam Ramli, Ahmad Shukri Yahaya, Noor Faizah Fitri Md Yusof, Nurulilyana Sansuddin & Wesam Ahmed Al Madhoun. 2010. Transformation
of nitrogen dioxide into ozone and prediction of ozone concentrations
using multiple linear regression techniques. Environmental
Monitoring and Assessment 165(1): 475-489.
Rizzo,
A. & Glasson, J. 2012. Iskandar Malaysia.
Cities 29(6): 417-427.
Song,
Q. & Chissom, B.S. 1993a. Forecasting enrollments
with fuzzy time series - Part I. Fuzzy Sets and Systems 54(1):
1-9.
Song,
Q. & Chissom, B.S. 1993b. Fuzzy time series and its models. Fuzzy Sets and Systems
54(3): 269-277.
Vlachogianni,
A., Kassomenos, P., Karppinen,
A., Karakitsios, S. & Kukkonen,
J. 2011.
Evaluation of a multiple regression model for
the forecasting of the concentrations of NOx and PM10 in Athens
and Helsinki. Science of the Total Environment 409(8):
1559-1571.
Wang,
X.K. & Lu, W.Z. 2006. Seasonal variation of air pollution index:
Hong Kong case study. Chemosphere 63(8): 1261- 1272.
Yu,
H.K. 2005.
Weighted fuzzy time series models for TAIEX forecasting. Physica
A: Statistical Mechanics and Its Applications 349(3-4): 609-624.
*Pengarang untuk surat-menyurat; email: mhl@utm.my