Sains Malaysiana 45(11)(2016): 1649–1653
Chemical and Thermal
Properties of Purified Kenaf Core and
Oil Palm Empty Fruit Bunch Lignin
(Kajian
Kimia dan Terma
Lignin Tulen Teras Kenaf
dan Serabut
Tandan Kosong Kelapa
Sawit)
SHARIFAH NURUL
AIN
SYED
HASHIM,
SARANI
ZAKARIA*,
CHIN
HUA
CHIA,
FEI LING
PUA
& SHARIFAH NABIHAH SYED
JAAFAR
School
of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia
43600
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 28 Mac 2015/Diterima: 26 Januari 2016
ABSTRACT
Chemical and thermal properties
of pure lignin are depending on the plant origin, extraction method
and type of lignocellulosic. In this study, lignin from oil palm
empty fruit bunch (EFB) and kenaf core were recovered
from soda black liquor by two steps of acid precipitation with
hydrochloric acid and followed by soxhlet
with n-hexane. The XRD analysis of purified EFB lignin
(EAL)
and purified kenaf core lignin (KAL)
exhibited amorphous properties, similar to the standard alkali
lignin (SAL).
The FTIR and Raman spectra showed that all samples consist of
HGS
unit. In FTIR, the syringyl
unit is assigned at (1125 cm-1), (1327 and 1121 cm-1)
and (1326 and 1117 cm-1) meanwhile the guaicyl unit is assigned at (1263, 1212 and 1028 cm-1),
(1271, 1217 and 1028 cm-1) and (1270, 1211 and
1030 cm-1) for SAL, EAL and
KAL,
respectively. The peak around 1160 cm-1 represents
C-O stretching of conjugated ester group present in HGS lignin.
As for Raman, the HGS unit exists in the range of 1100-1400
cm-1. Among the purified samples,
the TGA result showed that KAL has
a better thermal stability with the residue of 36.49% and higher
Tg value
which is 152.69°C.
Keywords: Acid precipitation;
black liquor; HGS unit; soda lignin; soxhlet extraction
ABSTRAK
Sifat kimia dan terma lignin tulen bergantung kepada tumbuhan asal, kaedah pengekstrakan dan jenis lignoselulosa. Dalam kajian ini,
lignin daripada serabut
tandan kosong kelapa
sawit (EFB) dan
teras kenaf
telah diasingkan daripada likor hitam soda dengan dua peringkat pemendakan
asid menggunakan
asid hidroklorik dan diikuti proses penulenan dengan n-heksana dalam sistem
soxhlet. Berdasarkan
kepada difraktogram sinar-X, didapati sampel lignin tulen EFB(EAL) dan
sampel lignin kenaf
teras (KAL) mempamerkan
sifat amorfus
sama seperti sampel
SAL.
Pencirian
FTIR
dan Raman pula membuktikan
sampel lignin mempunyai
kesemua unit monomer HGS. Dalam
analisis FTIR, unit siringil
ditemui pada
(1125 cm-1),
(1327 dan 1121 cm-1)
dan (1326 dan
1117 cm-1)
manakala unit guaiasil
ditemui pada (1263, 1212 dan 1028 cm-1), (1271, 1217 dan 1028 cm-1) dan
(1270, 1211 dan 1030 cm-1)
masing-masing bagi
SAL,
EAL
dan KAL.
Puncak sekitar 1160 cm-1 mewakili regangan C-O bagi kumpulan ester berkonjugat yang hadir dalam lignin HGS. Bagi analisis
Raman, unit HGS hadir dalam
julat 1100-1400 cm-1.
Antara sampel yang ditulenkan,
KAL
mempunyai kestabilan
terma yang baik
dengan baki 36.49% dan nilai Tg yang tinggi
iaitu 152.69°C.
Kata kunci: Lignin soda; likor hitam; pemendakan
asid; pengasingan
soxhlet; unit HGS
RUJUKAN
Abdullah, N., Sulaiman, F. & Gerhauser, F. 2011. Characterisation
of oil palm empty fruit bunches for fuel application. Journal
of Physical Science 22(1): 1-24.
Akbarzadeh, E.,
Mohamad Ibrahim, M.N. & Rahim, A.A. 2011. Corrosion
inhibition of mild steel in near neutral solution by Kraft and
soda lignins extracted from oil palm empty fruit bunch. Int.
J. Electrochem. Sci. 6: 5396-5416.
Baker, D.A. & Rials, T.G. 2013. Recent
advances in low-cost carbon fiber manufacture from lignin. Journal
of Applied Polymer Science 130(2): 713-728.
Carlos, R.M. & Khang, D.B. 2008. Characterization of
biomass energy projects in Southeast Asia. Biomass and Bioenergy
32: 525-532.
Dence, C.W. & Lin, S.Y. 1992.
Methods in Lignin Chemistry. Springer-Verlag: Berlin Heidelberg.
Fitigau,
I.F., Peter, F. & Boeriu, C.G. 2013. Structural analysis of lignin from different sources. International
Science Index 7(4): 98-103.
Garcia,
A., Alriols, M.G., Spigno,
G. & Labidi, J. 2012. Lignin as natural radical scavanger.
Effect of the obtaining and purification processes
on the antioxidant behaviour of lignin.
Biochemical Engineering Journal 67: 173-185.
Garcia,
A., Toledano, A., Serrano, L., Egues,
I., Gonzalez, M., Marin, F. & Labidi,
J. 2009. Characterization of lignins obtained by
selective precepitation. Separation
and Purification Technology 68: 193-198.
Geronikaki,
A.A., Dalimova, G.N., Ya,
N., Kul’chik & Abduazimoz,
K.A. 1978.
A study of the structure of kenaf
lignins by alkaline nitrobenzene oxidation. Chemistry
of Natural Compounds 14(5): 551-554.
Gierlinger,
N., Keplinger, T. & Harrington,
M. 2012. Imaging of plant cell walls by confocal Raman microscopy. Nature
Protocols 7(9): 1694-1708.
Jaafar,
S.N.S., Haimer, E., Liebner,
F., Bohmdorfer, S., Potthast,
A. & Rosenau, T. 2011. Empty palm fruit
bunches-a Co2- based biorefinery
concept. Journal of Biobased Materials
and Bioenergy 5: 1-9.
Jimenez,
L., Serrano, L., Rodriguez, A. & Sanchez, R. 2009. Soda-anthraquinone pulping of palm oil empty fruit bunches and
beating of the resulting pulp. Bioresource
Technology 100: 1262-1267.
Li, X., Tabil, L.G. & Panigrahi, S.
2007. Chemical treatments of natural fiber for use in natural
fiber-reinforced composites: A review. J. Polym.
Environ. 15: 25-33.
Lu, F., Karlen, S.D., Regner, M., Kim, H.,
Ralph, S.A., Sun, R., Kuroda, K., Augustin, M.A., Mawson, M.,
Sabarez, H., Singh, T., Jimenez-Monteon,
G., Zakaria, S., Hill, S., Harris, P.J., Boerjan,
W., Wilkerson, C.G., Mansfield, S.D. & Ralph, J. 2015. Naturally
P-hydroxybenzoylated lignins
in palms. Bioenerg. Res. 8: 934.
Luo,
J., Genco, J., Cole, B. & Fort,
R. 2011. Lignin recovered
from the near-neutral hemicellulose extraction process as a precursor
for carbon fiber. BioResource
6(4): 4566-4593.
Mohamad
Ibrahim, M.N., Zakaria, N., Sipaut,
C.S., Sulaiman, O. & Hashim, R. 2011.
Chemical and thermal properties of lignin from oil palm biomass
as a subtitute for phenol in a phenol formaldehyde resin production.
Carbohydrate Polymer 86: 112-119.
Mohamad
Ibrahim, M.N., Md Ghani, A. & Nen,
N. 2007. Formulation of
lignin phenol formaldehyde resins as a wood adhesive. The Malaysian
Journal of Analytical Sciences 11(1): 213-218.
Mossello,
A.A., Harun, J., Shamsi, S.R.F., Resalati,
H., Md Tahir, P., Ibrahim, R. & Mohmamed,
A.Z. 2010.
A review of literatures related of using kenaf
for pulp production (beating, fractionation, and recycled fiber).
Modern Applied Science 4(9): 131-138.
Nishimura,
N., Izumi, A. & Kuroda, K. 2002. Structural characterization of kenaf lignin: Differences among kenaf
varieties. Industrial Crops and Products 15: 115-122.
Park,
Y., Doherty, W.O.S. & Halley, P.J. 2008. Developing lignin-based resin coatings and composites. Industrial
Crops and Products 27: 163-167.
Roder,
T. & Sixta, H. 2004. Confocal Raman spectroscopy-applications on wood samples. Lenzinger Berichte 83:
13-16.
Seca,
A.M.L., Cavaleiro, J.a.S.,
Domingues, F.M.J., Silverstre, A.J.D.,
Evtuguin, D. & Neto,
C.P. 1998.
Structural characterization of the bark and
core lignins from kenaf (Hibiscus
cannabinus) J. Agric. Food Chem. 46: 3100-3108.
Sevastyanova,
O., Qin, W. & Kadla, J.F. 2010. Effect of nanofillers as reinforcement agents
for lignin composite fibers. Journal of Applied Polymer
Science 117: 2877-2881.
Sumathi,
G.A., Chai, S.P. & Mohamed, A.R. 2008. Utilization of
oil palm as a source of renewable energy in Malaysia. Renewable
and Sustainable Energy Reviews 12: 2404-2421.
Sun,
R., Tomkinson, J. & Jones, G.L. 2000. Fractional characterization
of Ash-Aq lignin by successive extraction
wih organic solvents from oil palm EFB
fibre. Polymer Degradation and Stability 68:
11-119.
Yan,
T., Xu, Y. & Yu, C. 2009. The isolation and characterization
of lignin of kenaf fiber. Journal
of Applied Polymer Science 114: 1896-1901.
*Pengarang untuk surat-menyurat; email: szakaria@ukm.edu.my