Sains Malaysiana 45(11)(2016): 1649–1653

 

Chemical and Thermal Properties of Purified Kenaf Core and Oil Palm Empty Fruit Bunch Lignin

(Kajian Kimia dan Terma Lignin Tulen Teras Kenaf dan Serabut Tandan Kosong Kelapa Sawit)

 

SHARIFAH NURUL AIN SYED HASHIM, SARANI ZAKARIA*, CHIN HUA CHIA,

FEI LING PUA & SHARIFAH NABIHAH SYED JAAFAR

 

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 28 Mac 2015/Diterima: 26 Januari 2016

 

 

ABSTRACT

Chemical and thermal properties of pure lignin are depending on the plant origin, extraction method and type of lignocellulosic. In this study, lignin from oil palm empty fruit bunch (EFB) and kenaf core were recovered from soda black liquor by two steps of acid precipitation with hydrochloric acid and followed by soxhlet with n-hexane. The XRD analysis of purified EFB lignin (EAL) and purified kenaf core lignin (KAL) exhibited amorphous properties, similar to the standard alkali lignin (SAL). The FTIR and Raman spectra showed that all samples consist of HGS unit. In FTIR, the syringyl unit is assigned at (1125 cm-1), (1327 and 1121 cm-1) and (1326 and 1117 cm-1) meanwhile the guaicyl unit is assigned at (1263, 1212 and 1028 cm-1), (1271, 1217 and 1028 cm-1) and (1270, 1211 and 1030 cm-1) for SAL, EAL and KAL, respectively. The peak around 1160 cm-1 represents C-O stretching of conjugated ester group present in HGS lignin. As for Raman, the HGS unit exists in the range of 1100-1400 cm-1. Among the purified samples, the TGA result showed that KAL has a better thermal stability with the residue of 36.49% and higher Tg value which is 152.69°C.

 

Keywords: Acid precipitation; black liquor; HGS unit; soda lignin; soxhlet extraction

 

ABSTRAK

Sifat kimia dan terma lignin tulen bergantung kepada tumbuhan asal, kaedah pengekstrakan dan jenis lignoselulosa. Dalam kajian ini, lignin daripada serabut tandan kosong kelapa sawit (EFB) dan teras kenaf telah diasingkan daripada likor hitam soda dengan dua peringkat pemendakan asid menggunakan asid hidroklorik dan diikuti proses penulenan dengan n-heksana dalam sistem soxhlet. Berdasarkan kepada difraktogram sinar-X, didapati sampel lignin tulen EFB(EAL) dan sampel lignin kenaf teras (KAL) mempamerkan sifat amorfus sama seperti sampel SAL. Pencirian FTIR dan Raman pula membuktikan sampel lignin mempunyai kesemua unit monomer HGS. Dalam analisis FTIR, unit siringil ditemui pada (1125 cm-1), (1327 dan 1121 cm-1) dan (1326 dan 1117 cm-1) manakala unit guaiasil ditemui pada (1263, 1212 dan 1028 cm-1), (1271, 1217 dan 1028 cm-1) dan (1270, 1211 dan 1030 cm-1) masing-masing bagi SAL, EAL dan KAL. Puncak sekitar 1160 cm-1 mewakili regangan C-O bagi kumpulan ester berkonjugat yang hadir dalam lignin HGS. Bagi analisis Raman, unit HGS hadir dalam julat 1100-1400 cm-1. Antara sampel yang ditulenkan, KAL mempunyai kestabilan terma yang baik dengan baki 36.49% dan nilai Tg yang tinggi iaitu 152.69°C.

 

Kata kunci: Lignin soda; likor hitam; pemendakan asid; pengasingan soxhlet; unit HGS

RUJUKAN

Abdullah, N., Sulaiman, F. & Gerhauser, F. 2011. Characterisation of oil palm empty fruit bunches for fuel application. Journal of Physical Science 22(1): 1-24.

Akbarzadeh, E., Mohamad Ibrahim, M.N. & Rahim, A.A. 2011. Corrosion inhibition of mild steel in near neutral solution by Kraft and soda lignins extracted from oil palm empty fruit bunch. Int. J. Electrochem. Sci. 6: 5396-5416.

Baker, D.A. & Rials, T.G. 2013. Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science 130(2): 713-728.

Carlos, R.M. & Khang, D.B. 2008. Characterization of biomass energy projects in Southeast Asia. Biomass and Bioenergy 32: 525-532.

Dence, C.W. & Lin, S.Y. 1992. Methods in Lignin Chemistry. Springer-Verlag: Berlin Heidelberg.

Fitigau, I.F., Peter, F. & Boeriu, C.G. 2013. Structural analysis of lignin from different sources. International Science Index 7(4): 98-103.

Garcia, A., Alriols, M.G., Spigno, G. & Labidi, J. 2012. Lignin as natural radical scavanger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochemical Engineering Journal 67: 173-185.

Garcia, A., Toledano, A., Serrano, L., Egues, I., Gonzalez, M., Marin, F. & Labidi, J. 2009. Characterization of lignins obtained by selective precepitation. Separation and Purification Technology 68: 193-198.

Geronikaki, A.A., Dalimova, G.N., Ya, N., Kul’chik & Abduazimoz, K.A. 1978. A study of the structure of kenaf lignins by alkaline nitrobenzene oxidation. Chemistry of Natural Compounds 14(5): 551-554.

Gierlinger, N., Keplinger, T. & Harrington, M. 2012. Imaging of plant cell walls by confocal Raman microscopy. Nature Protocols 7(9): 1694-1708.

Jaafar, S.N.S., Haimer, E., Liebner, F., Bohmdorfer, S., Potthast, A. & Rosenau, T. 2011. Empty palm fruit bunches-a Co2- based biorefinery concept. Journal of Biobased Materials and Bioenergy 5: 1-9.

Jimenez, L., Serrano, L., Rodriguez, A. & Sanchez, R. 2009. Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp. Bioresource Technology 100: 1262-1267.

Li, X., Tabil, L.G. & Panigrahi, S. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 15: 25-33.

Lu, F., Karlen, S.D., Regner, M., Kim, H., Ralph, S.A., Sun, R., Kuroda, K., Augustin, M.A., Mawson, M., Sabarez, H., Singh, T., Jimenez-Monteon, G., Zakaria, S., Hill, S., Harris, P.J., Boerjan, W., Wilkerson, C.G., Mansfield, S.D. & Ralph, J. 2015. Naturally P-hydroxybenzoylated lignins in palms. Bioenerg. Res. 8: 934.

Luo, J., Genco, J., Cole, B. & Fort, R. 2011. Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioResource 6(4): 4566-4593.

Mohamad Ibrahim, M.N., Zakaria, N., Sipaut, C.S., Sulaiman, O. & Hashim, R. 2011. Chemical and thermal properties of lignin from oil palm biomass as a subtitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymer 86: 112-119.

Mohamad Ibrahim, M.N., Md Ghani, A. & Nen, N. 2007. Formulation of lignin phenol formaldehyde resins as a wood adhesive. The Malaysian Journal of Analytical Sciences 11(1): 213-218.

Mossello, A.A., Harun, J., Shamsi, S.R.F., Resalati, H., Md Tahir, P., Ibrahim, R. & Mohmamed, A.Z. 2010. A review of literatures related of using kenaf for pulp production (beating, fractionation, and recycled fiber). Modern Applied Science 4(9): 131-138.

Nishimura, N., Izumi, A. & Kuroda, K. 2002. Structural characterization of kenaf lignin: Differences among kenaf varieties. Industrial Crops and Products 15: 115-122.

Park, Y., Doherty, W.O.S. & Halley, P.J. 2008. Developing lignin-based resin coatings and composites. Industrial Crops and Products 27: 163-167.

Roder, T. & Sixta, H. 2004. Confocal Raman spectroscopy-applications on wood samples. Lenzinger Berichte 83: 13-16.

Seca, A.M.L., Cavaleiro, J.a.S., Domingues, F.M.J., Silverstre, A.J.D., Evtuguin, D. & Neto, C.P. 1998. Structural characterization of the bark and core lignins from kenaf (Hibiscus cannabinus) J. Agric. Food Chem. 46: 3100-3108.

Sevastyanova, O., Qin, W. & Kadla, J.F. 2010. Effect of nanofillers as reinforcement agents for lignin composite fibers. Journal of Applied Polymer Science 117: 2877-2881.

Sumathi, G.A., Chai, S.P. & Mohamed, A.R. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 12: 2404-2421.

Sun, R., Tomkinson, J. & Jones, G.L. 2000. Fractional characterization of Ash-Aq lignin by successive extraction wih organic solvents from oil palm EFB fibre. Polymer Degradation and Stability 68: 11-119.

Yan, T., Xu, Y. & Yu, C. 2009. The isolation and characterization of lignin of kenaf fiber. Journal of Applied Polymer Science 114: 1896-1901.

 

 

*Pengarang untuk surat-menyurat; email: szakaria@ukm.edu.my

 

 

 

sebelumnya