Sains Malaysiana 45(11)(2016): 1773–1777
On the Estimation of
Three Parameters Lognormal Distribution Based on Fuzzy Life Time
Data
(Anggaran
Taburan Lognormal Tiga
Parameter Berdasarkan Data Masa Hayat
yang Kabur)
MUHAMMAD SHAFIQ1*,
ALAMGIR2
& MUHAMMAD ATIF2
1Department
of Economics, Kohat University of Science
and Technology, Kohat
2Department
of Statistics, University of Peshawar, Pakistan
Diserahkan: 10 Jun 2015/Diterima:
14 Jun 2016
ABSTRACT
Countless statistical tools
are available to extract information from data. Life time modeling
is considered as one of the most prominent fields of statistics,
which is evident from the developments made in this field in the
last few decades. Almost every statistic for life time analysis
is based on precise life time observations, however, life time is
not a precise measurement but more or less fuzzy. Therefore, in
addition to classical statistical tools, fuzzy number approaches
to describe life time data are more suitable. In order to incorporate
fuzziness of the observations, fuzzy estimators for the three parameter
lognormal distribution were suggested. The proposed estimators cover
stochastic variation as well as fuzziness of the observations.
Keywords: Characterizing function;
fuzzy number; life time; non-precise data
ABSTRAK
Terdapat banyak perkakasan
statistik tersedia
untuk mengekstrak maklumat daripada data. Pemodelan masa
hayat dianggap sebagai salah satu
bidang statistik
yang paling menonjol. Ini jelas
daripada pembangunan
bidang ini sejak
beberapa dekad
yang lalu. Hampir setiap statistik
untuk analisis
masa hayat adalah berasaskan
pemerhatian masa hayat
yang tepat, walau
bagaimanapun, masa hayat bukanlah suatu pengukuran yang tepat tetapi lebih atau
kurang kabur.
Oleh itu, sebagai tambahan
kepada perkakas
statistik klasik, pendekatan nombor kabur untuk menggambarkan
data masa hayat adalah
lebih sesuai. Dalam usaha untuk menggabungkan
kekaburan daripada
pemerhatian, penganggaran kabur untuk taburan
tiga parameter lognormal telah
dicadangkan. Penganggaran yang dicadangkan meliputi kelainan stokastik serta kekaburan daripada pemerhatian.
Kata kunci: Data tidak
tepat; fungsi
pencirian; masa hayat; nombor kabur
RUJUKAN
Barbato, G.,
Germak, A., Genta,
G. & Barbato, A. 2013. Measurements for Decision Making. Measurements and Basic Statistics.
Bologna: Esculapio.
Cohen, A.C. & Whitten, B.J. 1980. Estimation in the three-parameter lognormal distribution. Journal
of the American Statistical Association 75(370): 399-404.
Deshpande, J.V. & Purohit, S.G. 2005. Life Time Data: Statistical Models and Methods. Singapore:
World Scientific Publishing.
Huang, H.Z., Zuo, M.J. & Sun, Z.Q.
2006. Bayesian reliability analysis for fuzzy lifetime
data. Fuzzy Sets and Systems 157(12): 1674-1686.
Klir, G.J. & Yuan, B.
1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. New
Jersey: Prentice-Hall.
Pak, A., Parham, G. & Saraj, M. 2013. Reliability estimation in Rayleigh distribution based on fuzzy lifetime
data. International Journal of System Assurance Engineering and
Management 5(4): 487-494.
Szeliga, E.
2004. Structural reliability - fuzzy sets theory approach. Journal
of Theoretical and Applied Mechanics 42(3): 651-666.
Viertl, R. 2011. Statistical
Methods for Fuzzy Data. Chichester:
Wiley.
Viertl, R. 2009. On reliability estimation based
on fuzzy lifetime data. Journal of Statistical Planning &
Inference 139(5): 1750-1755.
Viertl, R.
& Hareter, D. 2006. Beschreibung und Analyse
unscharfer Information: Statistische
Methoden f¨ur
unscharfe Daten. Wien: Springer.
Wu,
H.C. 2004. Fuzzy Bayesian estimation on lifetime
data. Computational Statistics 19(4): 613-633.
Zadeh, L.
1965. Fuzzy sets. Information and Control 8(3): 338-353.
*Pengarang
untuk surat-menyurat;
email: mshafiq_stat@yahoo.com
|