Sains Malaysiana 45(12)(2016): 
                1807–1814
              http://dx.doi.org/10.17576/jsm-2016-4512-04 
               
              Kesan Penambahan 
                Surfaktan Tak-Ionik kepada Kompleks Al(III)-Morin dalam Penentuan 
                Aluminium (III) Akues secara Spektrofotometri
              (Effect of Addition 
                of Non-Ionic Surfactant to the A2l(III)-Morin Complex in Spectrophotometry 
                Determination of Aqueous Aluminum(III))
               
              FAIZ BUKHARI 
                MOHD 
                SUAH1*, 
                MUSA 
                AHMAD2,3 
                & LEE YOOK HENG2
               
              1Pusat Pengajian 
                Sains Kimia, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, 
                Malaysia
               
              2Pusat Pengajian 
                Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, 
                Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, 
                Malaysia
               
              3Fakulti Sains dan 
                Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 
                71800 Nilai
              Negeri Sembilan 
                Darul Khusus, Malaysia
               
              Diserahkan: 1 Februari 
                2014/Diterima: 8 April 2016
               
              ABSTRAK
              Dalam kajian ini, kesan surfaktan 
                tak-ionik terhadap kompleks Al(III)-morin telah dijalankan. Surfaktan 
                tak-ionik didapati telah meningkatkan bacaan serapan kompleks 
                Al(III)-morin. Penambahan triton X-100 kepada kompleks Al(III)-morin 
                telah membolehkan penentuan ion Al(III) dalam kuantiti submikrogram 
                pada pH4.00 dijalankan. Bacaan serapan maksimum adalah pada 425 
                nm dengan serapan molar, ε, 9.31 × 103 l.mol-1cm-1. 
                Graf kalibrasi bagi penentuan ion Al(III) adalah linear daripada 
                0.03 hingga 2.0 μg mL-1 dengan had pengesanan 0.015 μg 
                mL-1 telah 
                diperoleh dalam kajian ini. Sisihan ralat relatif (r.s.d) ialah 
                2.2% bagi kepekatan Al(III) 1.0 μg mL-1. Kesan penambahan 
                ion lain terhadap kompleks Al(III)-morin turut dijalankan dan 
                didapati ion Cu(II), Zn(II) dan Pb(II) memberi gangguan yang lebih 
                berbanding ion-ion lain.
               
              Kata kunci: Interaksi kompleks 
                logam-surfaktan; morin; penentuan aluminium; surfaktan tak-ionik; 
                Triton X-100 
               
              ABSTRACT
              The effect of surfactants on 
                the Al(III)-morin complex have been studied. It was found that 
                non-ionic surfactant noticeably enhances the absorbance of the 
                Al(III)-morin complex. Determination of submicrogram quantities 
                of Al(III) ion at pH4.00 was made possible by the addition of 
                triton X-100. Maximum absorption was obtained at wavelength of 
                425 nm, with the calculated molar absorptivity, ε, of 9.31 
                × 103 l.mol-1.cm-1. 
                A linear calibration curve of 0.03 to 2.0 μg mL-1 with 
                the detection limit of 0.015 μg mL-1 was attained for determination 
                of Al(III) ion. The calculated relative standard deviation (r.s.d) 
                was 2.2% for Al(III) ion quantified at 1.0 μg mL-1. 
                The influence of foreign ions towards the Al(III)-morin complex 
                responses have been carried out too, with Cu(II), Zn(II) and Pb(III) 
                were found to be the main interferences.
               
              Keywords: Determination of aluminium; metal complex-surfactant interaction; 
                morin; non-ionic surfactant; Triton X-100
              RUJUKAN 
              Ahmed, 
                M.J. & Hossan, J. 1995. Spectrophotometric determination of 
                aluminium by morin. Talanta 42: 1135-1142. 
              Alarfaj, 
                N.A. & El-Tohamy, F. 2015. Applications of micelle enhancement 
                in luminescent-based analysis. Luminescence 30: 3-11. 
              Alonso, 
                A., Almendral, M.J., Porras, M.J., Curto, Y. & De Maria, G.C. 
                2001. Flow-injection solvent extraction with and without phase 
                separation: Fluorimetric determination of aluminium in water. 
                Anal. Chim. Acta 447: 211-217. 
              Azimi, 
                M., Nafissi-Varcheh, N., Mogharabi, M., Faramarzi, M.A. & 
                Aboofazeli, R. 2016. Study of laccase activity and stability in 
                the presence of ionic andnon-ionic surfactants and the bioconversion 
                of indole in laccase-Tx-100 system. J. Mol. Catal. B: Enzym. 
                126: 69-75. 
              Carillo, 
                F., Perez, C. & Camara, C. 1991. Sensitive spectrofluorimetric 
                determination of aluminium(III) with Eriochrome Red B. Anal. 
                Chim. Acta 243: 121-125. 
              Carrion 
                Dominguez, J.L. & Cirugeda, M.D.L.G. 1987. Spectroscopic study 
                of the aluminium/lumogallion system in the presence of non-ionic 
                surfactants. Anal. Chim. Acta 198: 53-61. 
              Dean, 
                J.A. 1989. Chemist Ready Reference Handbook. New York: 
                McGraw-Hill. 
              Diaz 
                Garcia, M.E. & Sanz-Medel, A. 1986. Dye-surfactant interactions: 
                A review. Talanta 33: 255-264. 
              Ershova, 
                N.I. & Ivanov, V.M. 2000. Application of chromaticity characteristics 
                for direct determination of trace aluminum with Eriochrome cyanine 
                R by diffuse reflection spectroscopy. Anal. Chim. Acta 408: 
                145-151. 
              Fletcher, 
                P.D.I. & Robinson, B.H. 1984. The effect of organised surfactant 
                systems on the kinetics of metal-ligand complex formation and 
                dissociation. J. Chem. Soc. Faraday Trans. I 80: 2417-2437. 
                
              Fu-Sheng, 
                W. & Fang, Y. 1983. Spectrophotometric determination of silver 
                with cadion 2B and triton X-100. Talanta 30: 190-192. 
              Ghaedi, 
                M. 2007. Elective and sensitized spectrophotometric determination 
                of trace amounts of Ni(II) ion using α-benzyl dioxime in 
                surfactant media. Spectrochim. Acta A 66: 295- 301. 
              Goto, 
                K., Tamura, H., Onodera, M. & Nagayama, M. 1974. Spectrophotometric 
                determination of aluminium with ferron and a quaternary ammonium 
                salt. Talanta 21: 183-190. 
              Jarosz, 
                M. & Malat, M. 1988. Spectrophotometric study of the formation 
                of ternary complexes of iron(III) with some triphenylmethane dyes 
                and cationic surfactants. Microchem. J. 37: 268-274. 
              Lobinski, 
                R. & Marczenko, Z. 1992. Recent advances in ultraviolet-visible 
                spectrophotometry. Crit. Rev. Anal. Chem. 23: 55-111. 
              Marczenko, 
                Z. 1986. Separation and Spectrophotometric Determination of 
                Elements. Chichester: Ellis Horwood Limited. 
              Miura, 
                J. 1989. Masking agents in the spectrophotometric determination 
                of metal ions with 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol 
                and non-ionic surfactant. Analyst 114: 1323-1329. 
              Miyawaki, 
                M. & Uesugi, K. 1985. Highly sensitive spectrophotometric 
                determination of micro amounts of iron with chromai blue G and 
                cetyltrimethylammonium chloride. Microchim. Acta I: 135-141. 
                
              Narin, 
                I., Tuzen, M. & Soylak, M. 2004. Aluminium determination in 
                environmental samples by graphite furnace atomic absorption spectrometry 
                after solid phase extraction on Amberlite XAD-1180/pyrocatechol 
                violet chelating resin. Talanta 63: 411-418. 
              Oter, 
                O. & Aydogdu, S. 2011. Determination of aluminum ion with 
                morin in a medium comprised by ionic liquid-water mixtures. J. 
                Fluoresc. 21: 43-50. 
              Panhwar, 
                Q.K., Memon, S. & Bhanger, M.I. 2010. Synthesis, characterization, 
                spectroscopic and antioxidation studies of Cu(II)–morin complex. 
                J. Mol. Struct. 967: 47-53. 
              Pereiro, 
                M.R., Lopez, Diaz Garcia, M.E. & Sanz Medel, A. 1990. On-line 
                aluminium pre-concentration and its application to the determination 
                of the metal in dialysis concentrates by atomic spectrometric 
                methods. J. Anal. At. Spectrom. 5: 15-19. 
              Petcu, 
                A.R., Rogozea, E.A., Lazar, C.A., Olteanu, N.L., Meghea, A. & 
                Mihaly, M. 2016. Specific interactions within micelle microenvironment 
                in different charged dye/surfactant systems. Arab J. Chem. 
                9: 9-17. 
              Piñeiro, 
                L., Mercedes, N. & Al-Soufi, W. 2015. Fluorescence emission 
                of pyrene in surfactant solutions. Adv. Colloid Interface Sci. 
                215: 1-12. 
              Pramauro, 
                E. & Pelizzetti, E. 1996. Surfactants in Analytical Chemistry: 
                Applications of Organized Amphiphilic Media. New York: Elsevier. 
                
              Rao, 
                T.P., Reddy, M.L.P. & Pillai, A.R. 1998. Application of ternary 
                and multicomponent complexes to spectrophotometric and spectrofluorimetric 
                analysis of inorganics. Talanta 46: 765-813. 
              Safavi, 
                A., Mirzaee, M. & Abdollahi, H. 2003. Simultaneous spectrophotometric 
                determination of iron, titanium, and aluminum by partial least-squares 
                calibration method in micellar medium. Anal. Lett. 36: 
                699-712. 
              Sarzani, 
                C., Mentarti, E., Porta, V. & Gennro, M.C. 1987. Comparison 
                of anion-exchange methods for preconcentration of trace aluminum. 
                Anal. Chem. 59: 484-486. 
              Shokrollahi, 
                A., Ghaedi, M., Niband, M.S. & Rajabi, H.R. 2008. Selective 
                and sensitive spectrophotometric method for determination of sub-micro-molar 
                amounts of aluminium ion. J. Hazard. Mater. 151: 642-648. 
                
              Simoncic, B. & Kert, M. 2008. Influence of the chemical structure 
                of dyes and surfactants on their interactions in binary and ternary 
                mixture. Dyes & Pigments 76: 104-112.
              Tan Ling Ling & Musa Ahmad. 2008. Penggunaan jaringan neural 
                tiruan untuk analisis kuantitatif ion Al(III) berasaskan pengecaman 
                corak spektrum serapan. Sains Malaysiana 37(1): 51-57. 
                
              Warner, I.M. & 
                McGown, L.B. 1992. Molecular fluorescence, phosphorescence and 
                chemiluminescence spectrometry. Anal. Chem. 64: 343R-352R. 
                
              Wolfson, A.D. & 
                Gracey, G.M. 1987. Matrix effects in the determination of aluminium 
                in dialysis fluids by graphite furnace atomic absorption spectrometry. 
                Analyst 112: 1387- 1389. 
               
               
              *Pengarang untuk surat-menyurat; email: 
                fsuah@usm.my