Sains Malaysiana 45(1)(2016): 59–69

Improvement of Indoor Air Quality Using Local Fabricated Activated Carbon from Date Stones

(Penambahbaikan Kualiti Udara Dalaman Menggunakan Fabrikasi Karbon Aktif Tempatan daripada Biji Kurma)

 

J.A. RADAIDEH1, A.A. ALAZBA2, M.N. AMIN, Z.N. SHATNAWI1 & M.T. AMIN2*

 

1Department of Civil and Environmental Engineering, College of Engineering,

King Faisal University (KFU), P. O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia

 

2Alamoudi Water Research Chair, King Saud University, P.O. Box 2460

Riyadh 11451, Kingdom of Saudi Arabia

 

 

Diserahkan: 28 June 2014/Diterima: 9 November 2014

 

ABSTRACT

Indoor air quality assessment in residential areas of Al-Hofuf city/Eastern region of Saudi Arabia is investigated through a multi-week multiple sites sampling survey. Critical air pollution indicators, including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2) and total volatile organic compounds (TVOC) as well as temperatures were measured and analyzed during the study period from January to May 2014. Three site-types - roadside, urban and rural - were selected and within each site type, six locations were selected to study the varying indoor/outdoor air quality. The results indicated that NO2 and CO concentrations increased at the starting hours of the day. SO2 concentrations were relatively low and constant. In addition, a strong association between outdoor and indoor air quality was found. Measurements showed that indoor/outdoor ratio for TVOC ranged from 0.8 to 0.99. For CO2, NO2 and SO2, this was 0.92-1.15, 0.5-0.7 and 0.52-0.9, respectively. Finally, the effects of activated carbon (AC) were investigated to assess the extent of the improvement in the indoor air quality. The analysis of data obtained indicated that using locally prepared AC from date stones was an effective way to reduce the indoor air pollution with an overall efficiency of 85.5, while the use of industrial granular AC reduced the air pollutants with an efficiency of less than 0.6. In addition, AC was exposed to an exhaust gas flow to evaluate its elimination potential for high concentrated pollutants. The obtained results demonstrated that AC was also functioning as an efficient absorbent with an overall removal efficiency of 77.8%, even when it was exposed to high concentrations.

 

Keywords: Activated carbon; air pollution; date stones; indoor/outdoor concentrations and ratios; Saudi Arabia

 

ABSTRAK

Penilaian kualiti udara dalaman di kawasan perumahan bandar Al-Hofuf rantau/bahagian Timur Arab Saudi dikaji selama beberapa minggu di beberapa tapak kajian persampelan. Penunjuk pencemaran udara kritikal termasuk nitrogen dioksida (NO2), sulfur dioksida (SO2), karbon monoksida (CO), karbon dioksida (CO2) dan jumlah sebatian organik meruap (TVOC) dan juga suhu diukur dan dianalisis dalam tempoh kajian daripada Januari-Mei 2014. Tiga jenis tapak - sisi jalan, bandar dan luar bandar telah dipilih dan dalam setiap jenis tapak, enam lokasi dipilih untuk mengkaji kualiti udara dalaman/luaran yang berbeza. Keputusan menunjukkan bahawa kepekatan NO2 dan CO meningkat pada permulaan hari. Kepekatan SO2 secara relatifnya rendah dan tetap. Di samping itu, perkaitan yang kuat antara kualiti udara luaran dan dalaman telah diperoleh. Pengukuran menunjukkan bahawa nisbah dalaman/luaran untuk TVOC adalah antara nisbah 0.8-0.99. Untuk CO2, NO2 dan SO2, pula masing-masing adalah 0.92-1.15, 0.5 -0.7 dan 0.52-0.9. Akhirnya, kesan karbon diaktifkan (AC) telah dikaji untuk menilai sejauh mana peningkatan kualiti udara dalaman. Analisis data yang diperoleh menunjukkan bahawa penggunaan AC tempatan yang diperbuat daripada biji kurma adalah cara yang berkesan untuk mengurangkan pencemaran udara dalaman dengan kecekapan keseluruhan 85.5, manakala penggunaan perindustrian berbutir AC mengurangkan pencemaran udara dengan kecekapan kurang daripada 0.6. Di samping itu, AC juga terdedah kepada aliran gas ekzos untuk menilai potensi penyingkiran untuk pencemar tertumpu tinggi. Keputusan yang diperoleh menunjukkan bahawa AC juga berfungsi sebagai penyerap yang cekap dengan kecekapan penyingkiran keseluruhan 77.8%, walaupun ia telah didedahkan kepada kepekatan yang tinggi.

 

Kata kunci: Arab Saudi; biji kurma; karbon diaktifkan; kepekatan dalaman/luaran dan nisbah; pencemaran udara

RUJUKAN

Al-Jeelani, H.A. 2009. Air quality assessment at Al-Taneem area in the Holy Makkah City, Saudi Arabia. Environmental Monitoring Assessment 156: 211-222.

Al-Rehaili, A.M. 2002. Outdoor-indoor air quality in Riyadh: SO2, NH3, and HCHO. Environmental Monitoring Assessment 79(3): 287-300.

Bastani, A., Lee, C-S., Haghighat, F., Flaherty, C. & Lakdawala, N. 2010. Assessing the performance of air cleaning devices - A full-scale test method. Building and Environment 45: 143-149.

Chaloulakou, A., Mavroidis, I. & Duci, A. 2003. Indoor and outdoor carbon monoxide concentration relationships at different microenvironments in the Athens area. Chemosphere 52(6): 1007-1019.

Chowdhury, Z.Z., Zain, S.M., Khan, R.A. & Ashraf, M.A. 2011. Preparation, characterization and adsorption performance of the KOH-activated carbons derived from kenaf fiber for lead (II) removal from waste water. Scientific Research and Essays 6(29): 6185-6196.

Coward, S.K.D. & Ross, D.I. 2001. Nitrogen dioxide and carbon monoxide levels in England. Proceedings of Indoor Air, Edinburgh, UK. 30 June - 5 July.

Crump, D., Dimitroulopoulou, S., Squire, R., Ross, D., Pierce, B., White, M., Brown, V. & Coward, S. 2004. Ventilation and indoor air quality on new homes. Proceedings of the 13th World Clean Air and Environmental Protection Congress, London, UK. 22-27 August.

Das, D., Gaur, V. & Verma, N. 2004. Removal of volatile organic compound by activated carbon fiber. Carbon 42(14): 2949- 2962.

de la Puente, G. & Menéndez, J.A. 1998. On the distribution of oxygen-containing surface groups in carbons and their influence on the preparation of carbon supported molybdenum catalysts. Solid State Ionics 112: 103-111.

Dimitroulopoulou, C., Crump, D., Coward, S.K.D., Brown, B., Squire, R., Mann, H., White, M., Pierce, B. & Ross, D. 2005. Ventilation, Air Tightness and Indoor Air Quality in New Homes. Watford: BRE Electronic Publication.

Drakou, G., Zerefos, C., Ziomas, I. & Voyatzaki, M. 1998. Measurement and numerical simulations of indoor O3 and NOx in two different cases. Atmospheric Environment 32(4): 595-610.

El-Sharkawy, M.F. & Noweir, M.E.H. 2014. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. Journal of Family and Community Medicine 21(1): 39-47.

El-Sharkawy, M.F. & Zaki, G.R. 2012. Traffic pollutants levels at different designs of King Fahd Road, Saudi Arabia: Comparative study. TOJSAT: Online Journal of Science and Technology 2(1): 1-7.

Fisk, W.J. 2007. Can sorbent-based gas phase air cleaning for VOCs substitute for ventilation in commercial buildings? Proceedings of the IAQ 2007 healthy and sustainable buildings. Atlanta: ASHRAE.

Gallegoa, E., Rocaa, F.J., Perales, J.F. & Guardino, X. 2013. Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement. Building and Environment 67: 14-25.

Goncalves, F. & Figueiredo, J.L. 2004. Development of carbon supported metal catalysts for the simultaneous reduction of NO and N2O. Applied Catalysis B: Environmental 50: 271-278.

Haghighat, F., Lee, C-S., Pant, B., Bolourani, G., Lakdawala, N. & Bastani, A. 2008. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings. Atmospheric Environment 42: 8176-8184.

Haimour, N.M. & Emeish, S. 2006. Utilization of date stones for production of activated carbon using phosphoric acid. Waste Management 26: 651-660.

Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., Chia, C.H., Hamid, M.A.A., & Shamsudin, R. 2014. Nano Fe3 O4 - Activated carbon composites for aqueous supercapacitors. Sains Malaysiana 43(6): 885-894.

Illán-Gómez, M.J., Linares-Solano, A., Radovic, L.R. & de Lecea, C.S.M. 1995. NO reduction by activated carbons. 3. Some influence of catalyst loading on the catalytic effect of potassium. Energy Fuels 9: 104-111.

Kayani, S., Ahmad, M., Zafar, M., Sultana, S., Khan, M.P.Z., Ashraf, M.A., Hussain, J. & Yaseen, G. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies-Abbottabad, Northern Pakistan. Journal of Ethnopharmacology 156: 47-60.

Kousa, A., Monn, C., Rotko, T., Alm, S., Oglesby, L. & Jantunen, M.J. 2001. Personal exposure to NO2 in the EXPOLIS-study: Relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmospheric Environment 35(20): 3405-3412.

Lorimier, C., Subrenat, A., Le Coq, L. & Le Cloirec, P. 2005. Adsorption of toluene onto activated carbon fibre cloths and felts: Application to indoor air treatment. Environmental Technology 26(11): 1217-1230.

Montgomery, D.D. & Kalman, D.A. 1989.  Indoor/outdoor air quality. Applied Industrial Hygiene 4: 17-20.

NěRiain, C.M., Mark, D., Davies, M., Harrison, R.M. & Byrne, M.A. 2003. Averaging periods for indoor-outdoor ratios of pollution in naturally ventilated non-domestic buildings near a busy road. Atmospheric Environment 37(29): 4121-4132.

Noor, M.J., Sultana, S., Fatma, S., Ahmad, M., Zafar, M., Sarfraz, M., Balkhyour, M.A., Safi, S.Z. & Ashraf, M.A. 2014. Estimation of anticipated performance index and air pollution tolerance index and of vegetation around the marble industrial areas of Potwar region: Bioindicators of plant pollution response. Environmental Geochemistry and Health 37(3): 441-455.

Qureshi, T., Memon, N., Memon, S.Q. & Ashraf, M.A. 2015. Decontamination of ofloxacin: Optimization of removal process onto sawdust using response surface methodology. Desalination and Water Treatment DOI: 10.1080/19443994.2015.1006825.

Rasheed, A., Farooq, F., Rafique, U., Nasreen, S. & Ashraf, M.A. 2015. Analysis of sorption efficiency of activated carbon for removal of anthracene and pyrene for wastewater treatment. Desalination and Water Treatment DOI: 10.1080/19443994.2015.1015304.

Yeatts, K.B., El-Sadig, M., Leith, D., Kalsbeek, W., Al-Maskari, F., Couper, D., Funk, W.E., Zoubeidi, T., Chan, R.L., Trent, C.B., Davidson, C.A., Boundy, M.G., Kassab, M.M., Hasan, M.Y., Rusyn, I., Gibson, J.M. & Olshan, A.F. 2012. Indoor air pollutants and health in the United Arab Emirates. Environmental Health Perspectives 120(5): 687-694.

 

 

*Pengarang untuk surat-menyurat; email: mtamin@ksu.edu.sa

 

 

 

 

sebelumnya