Sains Malaysiana 45(1)(2016): 59–69
Improvement of Indoor Air Quality Using
Local Fabricated Activated Carbon from Date Stones
(Penambahbaikan Kualiti Udara Dalaman Menggunakan
Fabrikasi Karbon Aktif Tempatan daripada Biji Kurma)
J.A. RADAIDEH1,
A.A.
ALAZBA2,
M.N.
AMIN,
Z.N.
SHATNAWI1
& M.T. AMIN2*
1Department of Civil and Environmental
Engineering, College of Engineering,
King Faisal University (KFU), P.
O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia
2Alamoudi Water Research Chair, King
Saud University, P.O. Box 2460
Riyadh 11451, Kingdom of Saudi Arabia
Diserahkan: 28 June 2014/Diterima:
9 November 2014
ABSTRACT
Indoor air quality assessment
in residential areas of Al-Hofuf city/Eastern region of Saudi Arabia
is investigated through a multi-week multiple sites sampling survey.
Critical air pollution indicators, including nitrogen dioxide (NO2),
sulfur dioxide (SO2), carbon monoxide (CO),
carbon dioxide (CO2) and total volatile organic compounds
(TVOC) as well as temperatures were measured and analyzed
during the study period from January to May 2014. Three site-types
- roadside, urban and rural - were selected and within each site
type, six locations were selected to study the varying indoor/outdoor
air quality. The results indicated that NO2 and CO concentrations
increased at the starting hours of the day. SO2 concentrations
were relatively low and constant. In addition, a strong association
between outdoor and indoor air quality was found. Measurements showed
that indoor/outdoor ratio for TVOC ranged from 0.8 to 0.99. For CO2,
NO2 and SO2,
this was 0.92-1.15, 0.5-0.7 and 0.52-0.9, respectively. Finally,
the effects of activated carbon (AC) were investigated to assess the extent
of the improvement in the indoor air quality. The analysis of data
obtained indicated that using locally prepared AC from
date stones was an effective way to reduce the indoor air pollution
with an overall efficiency of 85.5, while the use of industrial
granular AC reduced the air pollutants with an efficiency of less
than 0.6. In addition, AC
was exposed to an exhaust gas flow to evaluate its
elimination potential for high concentrated pollutants. The obtained
results demonstrated that AC was
also functioning as an efficient absorbent with an overall removal
efficiency of 77.8%, even when it was exposed to high concentrations.
Keywords: Activated carbon;
air pollution; date stones; indoor/outdoor concentrations and ratios;
Saudi Arabia
ABSTRAK
Penilaian kualiti udara dalaman
di kawasan perumahan bandar Al-Hofuf rantau/bahagian Timur Arab
Saudi dikaji selama beberapa minggu di beberapa tapak kajian persampelan.
Penunjuk pencemaran udara kritikal termasuk nitrogen dioksida (NO2),
sulfur dioksida (SO2), karbon monoksida (CO), karbon
dioksida (CO2) dan jumlah sebatian organik
meruap (TVOC) dan juga suhu diukur dan dianalisis dalam tempoh kajian
daripada Januari-Mei 2014. Tiga jenis tapak - sisi jalan, bandar
dan luar bandar telah dipilih dan dalam setiap jenis tapak, enam
lokasi dipilih untuk mengkaji kualiti udara dalaman/luaran yang
berbeza. Keputusan menunjukkan bahawa kepekatan NO2 dan
CO
meningkat pada permulaan hari. Kepekatan SO2 secara
relatifnya rendah dan tetap. Di samping itu, perkaitan yang kuat
antara kualiti udara luaran dan dalaman telah diperoleh. Pengukuran
menunjukkan bahawa nisbah dalaman/luaran untuk TVOC adalah antara nisbah 0.8-0.99. Untuk
CO2, NO2 dan SO2,
pula masing-masing adalah 0.92-1.15, 0.5 -0.7 dan 0.52-0.9. Akhirnya,
kesan karbon diaktifkan (AC) telah dikaji untuk menilai sejauh
mana peningkatan kualiti udara dalaman. Analisis data yang diperoleh
menunjukkan bahawa penggunaan AC tempatan yang diperbuat daripada
biji kurma adalah cara yang berkesan untuk mengurangkan pencemaran
udara dalaman dengan kecekapan keseluruhan 85.5, manakala penggunaan
perindustrian berbutir AC mengurangkan pencemaran udara dengan
kecekapan kurang daripada 0.6. Di samping itu, AC juga
terdedah kepada aliran gas ekzos untuk menilai potensi penyingkiran
untuk pencemar tertumpu tinggi. Keputusan yang diperoleh menunjukkan
bahawa AC
juga berfungsi sebagai penyerap yang cekap dengan
kecekapan penyingkiran keseluruhan 77.8%, walaupun ia telah didedahkan
kepada kepekatan yang tinggi.
Kata kunci: Arab Saudi; biji kurma; karbon diaktifkan; kepekatan
dalaman/luaran dan nisbah; pencemaran udara
RUJUKAN
Al-Jeelani,
H.A. 2009. Air quality assessment at Al-Taneem area in the Holy
Makkah City, Saudi Arabia. Environmental Monitoring Assessment
156: 211-222.
Al-Rehaili,
A.M. 2002. Outdoor-indoor air quality in Riyadh: SO2,
NH3, and HCHO. Environmental Monitoring Assessment
79(3): 287-300.
Bastani,
A., Lee, C-S., Haghighat, F., Flaherty, C. & Lakdawala, N. 2010.
Assessing the performance of air cleaning devices - A full-scale
test method. Building and Environment 45: 143-149.
Chaloulakou,
A., Mavroidis, I. & Duci, A. 2003. Indoor and outdoor carbon
monoxide concentration relationships at different microenvironments
in the Athens area. Chemosphere 52(6): 1007-1019.
Chowdhury,
Z.Z., Zain, S.M., Khan, R.A. & Ashraf, M.A. 2011. Preparation,
characterization and adsorption performance of the KOH-activated
carbons derived from kenaf fiber for lead (II) removal from waste
water. Scientific Research and Essays 6(29): 6185-6196.
Coward,
S.K.D. & Ross, D.I. 2001. Nitrogen dioxide and carbon monoxide
levels in England. Proceedings of Indoor Air, Edinburgh,
UK. 30 June - 5 July.
Crump,
D., Dimitroulopoulou, S., Squire, R., Ross, D., Pierce, B., White,
M., Brown, V. & Coward, S. 2004. Ventilation and indoor air
quality on new homes. Proceedings of the 13th World Clean Air
and Environmental Protection Congress, London, UK. 22-27 August.
Das,
D., Gaur, V. & Verma, N. 2004. Removal of volatile organic compound
by activated carbon fiber. Carbon 42(14): 2949- 2962.
de
la Puente, G. & Menéndez, J.A. 1998. On the distribution of
oxygen-containing surface groups in carbons and their influence
on the preparation of carbon supported molybdenum catalysts. Solid
State Ionics 112: 103-111.
Dimitroulopoulou,
C., Crump, D., Coward, S.K.D., Brown, B., Squire, R., Mann, H.,
White, M., Pierce, B. & Ross, D. 2005. Ventilation, Air Tightness
and Indoor Air Quality in New Homes. Watford: BRE Electronic
Publication.
Drakou,
G., Zerefos, C., Ziomas, I. & Voyatzaki, M. 1998. Measurement
and numerical simulations of indoor O3 and NOx in two different cases. Atmospheric
Environment 32(4): 595-610.
El-Sharkawy,
M.F. & Noweir, M.E.H. 2014. Indoor air quality levels in a University
Hospital in the Eastern Province of Saudi Arabia. Journal of
Family and Community Medicine 21(1): 39-47.
El-Sharkawy,
M.F. & Zaki, G.R. 2012. Traffic pollutants levels at different
designs of King Fahd Road, Saudi Arabia: Comparative study. TOJSAT:
Online Journal of Science and Technology 2(1): 1-7.
Fisk,
W.J. 2007. Can sorbent-based gas phase air cleaning for VOCs substitute
for ventilation in commercial buildings? Proceedings of the IAQ
2007 healthy and sustainable buildings. Atlanta: ASHRAE.
Gallegoa,
E., Rocaa, F.J., Perales, J.F. & Guardino, X. 2013. Experimental
evaluation of VOC removal efficiency of a coconut shell activated
carbon filter for indoor air quality enhancement. Building and
Environment 67: 14-25.
Goncalves, F. &
Figueiredo, J.L. 2004. Development of carbon supported metal catalysts
for the simultaneous reduction of NO and N2O. Applied
Catalysis B: Environmental 50: 271-278.
Haghighat, F., Lee, C-S., Pant,
B., Bolourani, G., Lakdawala, N. & Bastani, A. 2008. Evaluation
of various activated carbons for air cleaning - Towards design of
immune and sustainable buildings. Atmospheric Environment 42:
8176-8184.
Haimour, N.M. & Emeish, S. 2006.
Utilization of date stones for production of activated carbon using
phosphoric acid. Waste Management 26: 651-660.
Ho, M.Y., Khiew, P.S., Isa, D.,
Tan, T.K., Chiu, W.S., Chia, C.H., Hamid, M.A.A., & Shamsudin,
R. 2014. Nano Fe3 O4 - Activated carbon composites for aqueous supercapacitors.
Sains Malaysiana 43(6): 885-894.
Illán-Gómez, M.J., Linares-Solano,
A., Radovic, L.R. & de Lecea, C.S.M. 1995. NO reduction by activated
carbons. 3. Some influence of catalyst loading on the catalytic
effect of potassium. Energy Fuels 9: 104-111.
Kayani, S., Ahmad, M., Zafar, M.,
Sultana, S., Khan, M.P.Z., Ashraf, M.A., Hussain, J. & Yaseen,
G. 2014. Ethnobotanical uses of medicinal plants for respiratory
disorders among the inhabitants of Gallies-Abbottabad, Northern
Pakistan. Journal of Ethnopharmacology 156: 47-60.
Kousa, A., Monn, C., Rotko, T.,
Alm, S., Oglesby, L. & Jantunen, M.J. 2001. Personal exposure
to NO2 in the EXPOLIS-study: Relation to residential
indoor, outdoor and workplace concentrations in Basel, Helsinki
and Prague. Atmospheric Environment 35(20): 3405-3412.
Lorimier, C., Subrenat, A., Le Coq,
L. & Le Cloirec, P. 2005. Adsorption of toluene onto activated
carbon fibre cloths and felts: Application to indoor air treatment.
Environmental Technology 26(11): 1217-1230.
Montgomery, D.D. & Kalman, D.A.
1989. Indoor/outdoor air
quality. Applied Industrial Hygiene 4: 17-20.
NěRiain, C.M., Mark, D., Davies,
M., Harrison, R.M. & Byrne, M.A. 2003. Averaging periods for
indoor-outdoor ratios of pollution in naturally ventilated non-domestic
buildings near a busy road. Atmospheric Environment 37(29):
4121-4132.
Noor, M.J., Sultana, S., Fatma,
S., Ahmad, M., Zafar, M., Sarfraz, M., Balkhyour, M.A., Safi, S.Z.
& Ashraf, M.A. 2014. Estimation of anticipated performance index
and air pollution tolerance index and of vegetation around the marble
industrial areas of Potwar region: Bioindicators of plant pollution
response. Environmental Geochemistry and Health 37(3): 441-455.
Qureshi, T., Memon, N., Memon, S.Q.
& Ashraf, M.A. 2015. Decontamination of ofloxacin: Optimization
of removal process onto sawdust using response surface methodology.
Desalination and Water Treatment DOI: 10.1080/19443994.2015.1006825.
Rasheed, A., Farooq, F., Rafique,
U., Nasreen, S. & Ashraf, M.A. 2015. Analysis of sorption efficiency
of activated carbon for removal of anthracene and pyrene for wastewater
treatment. Desalination and Water Treatment DOI: 10.1080/19443994.2015.1015304.
Yeatts, K.B., El-Sadig, M., Leith,
D., Kalsbeek, W., Al-Maskari, F., Couper, D., Funk, W.E., Zoubeidi,
T., Chan, R.L., Trent, C.B., Davidson, C.A., Boundy, M.G., Kassab,
M.M., Hasan, M.Y., Rusyn, I., Gibson, J.M. & Olshan, A.F. 2012.
Indoor air pollutants and health in the United Arab Emirates. Environmental
Health Perspectives 120(5): 687-694.
*Pengarang untuk surat-menyurat;
email: mtamin@ksu.edu.sa
|