Sains Malaysiana 45(2)(2016): 289–296
Free
Convection Boundary Layer Flow on a Horizontal Circular Cylinder in a Nanofluid
with Viscous Dissipation
(Olakan
Bebas Aliran Lapisan Sempadan pada Silinder Bulat Mengufuk dalam
Nanobendalir dengan Pelesapan Likat)
Muhammad
Khairul Anuar Mohamed1, Nor Aida
Zuraimi Md Noar1, Mohd Zuki Salleh*1 & Anuar Ishak2
1Applied
& Industrial Mathematics Research Group, Faculty of Industrial Sciences and Technology
Universiti Malaysia Pahang, 26300 Kuantan, Pahang
Darul Makmur, Malaysia
2School
of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
10 April 2015/Diterima: 2 Julai 2015
ABSTRACT
In this paper, the problem of free convection boundary layer flow
on a horizontal circular cylinder in a nanofluid with viscous dissipation
and constant wall temperature is investigated. The transformed boundary
layer equations are solved numerically using finite difference scheme
namely the Keller-box method. Numerical solutions were obtained
for the reduced skin friction coefficient, Nusselt number and Sherwood
number as well as the velocity and temperature profiles. The features
of the flow and heat transfer characteristics for various values
of the Brownian motion parameter, thermophoresis parameter, Lewis
number and Eckert number were analyzed and discussed.
Keywords: Free convection; horizontal circular cylinder;
nanofluid; viscous dissipation
ABSTRAK
Dalam kajian ini, masalah olakan bebas aliran lapisan sempadan pada
silinder bulat mengufuk dalam nanobendalir dengan pelesapan likat
dan suhu permukaan malar dikaji. Persamaan lapisan sempadan terjelma
diselesaikan secara berangka dengan menggunakan skim beza terhingga
dikenali sebagai kaedah kotak Keller. Penyelesaian berangka diperoleh
bagi pekali geseran kulit diturunkan, nombor Nusselt dan nombor
Sherwood diturunkan serta profil halaju dan suhu. Ciri aliran dan
pemindahan haba bagi pelbagai nilai parameter gerakan Brown, parameter
termoforesis, nombor Lewis dan nombor Eckert dianalisis dan dibincangkan.
Kata kunci: Nanobendalir; olakan
bebas; pelesapan likat; silinder bulat mengufuk
RUJUKAN
Anwar, I., Qasim, A.R., Ismail, Z., Salleh, M.Z. & Shafie, S.
2013. Chemical reaction and uniform heat generation/absorption effects on MHD
stagnation-point flow of a nanofluid over a porous sheet. World Applied
Sciences Journal 24(10): 1390.
Arifin, N.M.¡, Nazar, R. & Pop, I. 2011. Viscous flow due to a
permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana 40(12):
1359-1367.
Azim, N.H.M.A. 2014. Effects of viscous dissipation and heat generation on MHD
conjugate free convection flow from an isothermal horizontal circular
cylinder. SOP Transactions on Applied Physics 1(3): 1-11.
Bachok, N., Ishak, A. & Pop, I. 2010. Boundary-layer flow of
nanofluids over a moving surface in a flowing fluid. International Journal
of Thermal Sciences 49(9): 1663-1668.
Blasius, H. 1908. Grenzschichten in Flssigkeiten mit kleiner
Reibung. Zeitschrift f¨urangewandte Mathematik und Physik 56: 1-37.
Chen, C.H. 2004. Combined heat and mass transfer in MHD free
convection from a vertical surface with Ohmic heating and viscous
dissipation. International Journal of Engineering Science 42(7):
699-713.
Fr¨ossling,
N. 1958. Calculating by series expansion of the heat transfer in laminar,
constant property boundary layers at non isothermal surfaces. Archiv f¨or
Fysik 14: 143-151.
Gebhart,
B. 1962. Effects of viscous dissipation in natural convection. Journal of
Fluid Mechanics 14(02): 225-232.
Ishak,
A., Nazar, R., Amin, N., Filip, D. & Pop, I. 2007. Mixed convection of the
stagnation-point flow towards a stretching vertical permeable sheet. Malaysian
Journal of Mathematical Sciences 2: 217-226.
Ishak,
A., Nazar, R. & Pop, I. 2006. Mixed convection boundary layers in the
stagnation-point flow toward a stretching vertical sheet. Meccanica 41(5):
509-518.
Kakaç,
S. & Pramuanjaroenkij, A. 2009. Review of convective heat transfer
enhancement with nanofluids. International Journal of Heat and Mass Transfer 52(13-14): 3187-3196.
Khan,
W.A. & Pop, I. 2010. Boundary-layer flow of a nanofluid past a stretching
sheet. International Journal of Heat and Mass Transfer 53(11-12):
2477-2483.
Merkin,
J.H. & Pop, I. 1988. A note on the free convection boundary layer on a
horizontal circular cylinder with constant heat flux. Wärme - und
Stoffübertragung 22(1-2): 79-81.
Merkin,
J.H. 1977. Mixed convection from a horizontal circular cylinder. International
Journal of Heat and Mass Transfer 20(1): 73-77.
Merkin,
J.H. 1976. Free convection boundary layer on an isothermal horizontal cylinder. ASME/AIChe Heat Transfer Conference, St. Louis, USA.
Molla,
M.M., Hossain, M.A. & Paul, M.C. 2006. Natural convection flow from an
isothermal horizontal circular cylinder in presence of heat generation. International
Journal of Engineering Science 44(13-14): 949-958.
Nazar,
R., Jaradat, M., Arifin, N. & Pop, I. 2011. Stagnation-point flow past a
shrinking sheet in a nanofluid. Central European Journal of Physics 9(5):
1195-1202.
Nazar,
R., Amin, N., Filip, D. & Pop, I. 2004. Stagnation point flow of a
micropolar fluid towards a stretching sheet. International Journal of
Non-Linear Mechanics 39(7): 1227-1235.
Nazar,
R., Amin, N. & Pop, I. 2003. Mixed convection boundary-layer flow from a
horizontal circular cylinder in micropolar fluids: Case of constant wall
temperature. International Journal of Numerical Methods for Heat & Fluid
Flow 13(1): 86-109.
Nazar,
R., Amin, N. & Pop, I. 2002. Free convection boundary layer on an
isothermal horizontal circular cylinder in a micropolar fluid. Proceedings
of Tweifth Int Heat Transfer Conference. Paris, Elsevier. 2: 525-530.
Partha,
M.K., Murthy, P. & Rajasekhar, G.P. 2005. Effect of viscous dissipation on
the mixed convection heat transfer from an exponentially stretching surface. Heat
and Mass Transfer 41(4): 360-366.
Rosca,
A.V., Rosca, N.C. & Pop, I. 2014. Note on dual solutions for the mixed
convection boundary layer flow close to the lower stagnation point of a
horizontal circular cylinder: Case of constant surface heat flux. Sains
Malaysiana 43(8): 1239-1247.
Roşca,
N.C. & Pop, I. 2014. Unsteady boundary layer flow of a nanofluid past a
moving surface in an external uniform free stream using Buongiorno’s model. Computers
& Fluids 95(0): 49-55.
Salleh,
M.Z., Nazar, R. & Pop, I. 2011. Numerical solutions of forced convection
boundary layer flow on a horizontal circular cylinder with Newtonian heating. Malaysian
Journal of Mathematical Sciences 5(2): 161-184.
Salleh,
M.Z. & Nazar, R. 2010. Free convection boundary layer flow over a
horizontal circular cylinder with Newtonian heating. Sains Malaysiana 39(4):
671-676.
Salleh,
M.Z., Nazar, R. & Pop, I. 2009. Forced convection boundary layer flow at a
forward stagnation point with Newtonian heating. Chemical Engineering
Communications 196: 987-996.
Sarif,
N.M., Salleh, M.Z., Tahar, R.M. & Nazar, R. 2014. Numerical solution of the
free convection boundary layer flow over a horizontal circular cylinder with
convective boundary conditions. AIP Conference Proceedings 1602:
179-185.
Singh,
G. & Makinde, O.D. 2014. Axisymmetric slip flow on a vertical cylinder with
heat transfer. Sains Malaysiana 43(3): 483-489.
Soundalgekar,
V.M. 1972. Viscous dissipation effects on unsteady free convective flow past an
infinite, vertical porous plate with constant suction. International Journal
of Heat and Mass Transfer 15(6): 1253-1261.
Tahavvor,
A.R. & Yaghoubi, M. 2010. Experimental and numerical study of frost
formation by natural convection over a cold horizontal circular cylinder. International
Journal of Refrigeration 33(7): 1444-1458.
Tham,
L., Nazar, R. & Pop, I. 2014. Mixed convection flow from a horizontal
circular cylinder embedded in a porous medium filled by a nanofluid:
Buongiorno-Darcy model. International Journal of Thermal Sciences 84:
21-33.
Tham,
L. & Nazar, R. 2012. Mixed convection flow about a solid sphere embedded in
a porous medium filled with a nanofluid. Sains Malaysiana 41(12):
1643-1649.
Tiwari,
R. & Das, M. 2007. Heat transfer augmentation in a two-sided lid-driven
differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass
Transf. 50: 2002-2018.
Vajravelu,
K. & Hadjinicolaou, A. 1993. Heat transfer in a viscous fluid over a
stretching sheet with viscous dissipation and internal heat generation. International
Communications in Heat and Mass Transfer 20(3): 417-430.
Wong,
K.V. & De Leon, O. 2010. Applications of nanofluids: Current and future. Advances
in Mechanical Engineering 2: 519659.
Yacob,
N.A., Ishak, A., Pop, I. & Vajravelu, K. 2011. Boundary layer flow past a
stretching/shrinking surface beneath an external uniform shear flow with a
convective surface boundary condition in a nanofluid. Nanoscale Research
Letters 6(1): 1-7.
Yirga,
Y. & Shankar, B. 2013. Effects of thermal radiation and viscous dissipation
on magnetohydrodynamic stagnation point flow and heat transfer of nanofluid
towards a stretching sheet. Journal of Nanofluids 2(4): 283-291.
Yusoff, N.H.M., Uddin, M.J. &
Ismail, A.I.M. 2014. Combined similarity-numerical solutions of MHD boundary
layer slip flow of non-Newtonian power-law nanofluids over a radiating moving
plate. Sains Malaysiana 43(1): 151-159.
*Pengarang untuk surat-menyurat; email:
zukikuj@yahoo.com
|