Sains Malaysiana 45(2)(2016): 305–313
Haar Wavelet Method for Constrained Nonlinear Optimal Control Problems
with Application to Production Inventory Model
(Kaedah Gelombang Kecil Haar untuk Masalah Kawalan Optimum
Kekangan tak Linear dengan Model Aplikasi untuk Inventori Pengeluaran)
Waleeda Swaidan12* & Amran Hussin1
1Institute of Mathematical
Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Division of Basic Science, Faculty of Agriculture, University
of Baghdad
Diserahkan: 2 Februari 2015/Diterima:
18 Ogos 2015
ABSTRACT
A new numerical method was proposed in this paper
to address the nonlinear quadratic optimal control problems, with
state and control inequality constraints. This method used the quasilinearization
technique and Haar wavelet operational matrix to convert the nonlinear
optimal control problem into a sequence of quadratic programming
problems. The inequality constraints for trajectory variables were
transformed into quadratic programming constraints using the Haar
wavelet collocation method. The proposed method was applied to optimize
the control of the multi-item inventory model with linear demand
rates. By enhancing the resolution of the Haar wavelet, we can improve
the accuracy of the states, controls and cost. Simulation results
were also compared with other researchers' work.
Keywords: Direct method; Haar wavelet
operational matrix; optimal control; quadratic programming problem
ABSTRAK
Kaedah berangka baru telah dicadangkan dalam
kertas ini untuk menangani masalah kawalan optimum quadratik tak linear dengan
kekangan keadaan serta kawalan ketidaksamaan. Kaedah ini menggunakan teknik
quasipelinearan dan matriks operasi gelombang kecil Haar untuk menukar masalah
kawalan optimum tak linear kepada suatu turutan masalah pengaturcaraan
quadratik. Kekangan ketidaksamaan bagi pemboleh ubah trajektori diubah menjadi
kekangan pengaturcaraan quadratik menggunakan kaedah kolokasi gelombang kecil
Haar. Kaedah cadangan telah digunakan untuk mengoptimumkan kawalan model
inventori item berbilang dengan kadar permintaan linear. Dengan
mempertingkatkan resolusi gelombang kecil Haar, ketepatan keadaan, kawalan
serta kos boleh ditambah baik. Keputusan simulasi juga dibandingkan dengan
hasil penyelidikan lain.
Kata kunci: Kawalan optimum; kaedah langsung; masalah
pengaturcaraan quadratik; matriks operasi gelombang kecil Haar
RUJUKAN
Aziz, I. & Siraj-ul-Islam. 2013. New algorithms for the
numerical solution of nonlinear Fredholm and Volterra integral equations using
Haar wavelets. Journal of Computational and Applied Mathematics 239:
333-345.
Balkhi, Z.T. & Benkherouf, L. 2004. On an inventory model for
deteriorating items with stock dependent and time-varying demand rates. Computers
and Operations Research 31(2): 223-240.
Bellman, R. & Kalaba, R. 1965. Quasilinearization and
Nonlinear Boundary Value Problems. New York: Elsevier.
Bhatti, M.A. 2000. Practical Optimization Methods: With
Mathematica Applications. New York: Springer.
Brewer,
J. 1978. Kronecker products and matrix calculus in system theory. IEEE
Transactions on Circuits and Systems CAS-25(9): 772-781.
Chen,
C.F. & Hsiao, C.H. 1999. Wavelet approach to optimizing dynamic systems. In Control Theory and Applications, IEE Proceedings 146(2): 213-219.
Chen, C. & Hsiao, H. 1997. Haar
wavelet method for solving lumped and distributed parameter systems. IEE
Proceeding on Control Theory and Application 144(1): 87-94.
Dai, R. & Cochran, J. 2009. Wavelet collocation method
for optimal control problems. Journal of Optimization theory and Application 143: 265-278.
El-Gohary, A. & Elsayed, A. 2008. Optimal control of a
multi-item inventory model. International Mathematical Forum 3(27):
1295-1312.
Han, Z. & Li, S. 2011. A new approach for solving
optimal nonlinear control problems using decriminalization and rationalized
Haar functions. Advanced Engineering Forum 1: 387-394.
Hsiao, C. & Wu, S. 2007. Numerical solution of
time-varying functional differential equations via Haar wavelets. Applied
Mathematics and Computation 188(1): 1049-1058.
Jaddu, H. 2002. Direct solution of nonlinear optimal control
problems using quasilinearization and Chebyshev polynomials. Journal of the
Franklin Institute 339: 479-498.
Jaddu, H. 1998. Numerical Methods for Solving Optimal
Control Problems using Chebyshev Polynomials. PhD. Thesis, School of
Information Science, Japan Advanced Institute of Science and Technology
(Unpublished).
Lancaster, P. & Tismenetsky, M. 1985. The Theory of
Matrices: With Applications. New York: Academic press.
Marzban, H. & Razzaghi, M. 2010. Rationalized Haar
approach for nonlinear constrained optimal control problems. Applied
Mathematical Modelling 34(1): 174-183.
Mehra, R. & Davis, R. 1972. A generalized gradient
method for optimal control problems with inequality constraints and singular
arcs. IEEE Transactions on Automatic Control AC-17: 69-72.
Omar, M. 2012. A replenishment inventory model for items
under time-varying demand rates considering trade credit period and cash
discount for a finite time horizon. Sains Malaysiana 41(4): 493-497.
Sethi, S. & Thompson, G. 2006. Optimal Control
Theory. New York: Springer. pp. 153-184.
Siraj-ul-Islam, Šarler, B., Aziz, I. & Haq, F.
2011. Haar wavelet collocation method for the numerical solution of boundary
layer fluid flow problems. International Journal of Thermal Sciences 50(5):
686-697.
Siraj-ul-Islam, Aziz, I. & Šarler, B. 2010. The
numerical solution of second-order boundary-value problems by collocation
method with the Haar wavelets. Mathematical and Computer Modelling 52(9-10):
1577-1590.
Swaidan, W. & Hussin, A. 2013. Feedback control method
using Haar wavelet operational matrices for solving optimal control problems. Abstract
and Applied Analysis 2013: Article ID 240352.
*Pengarang untuk surat-menyurat;
email: waleeda_um@yahoo.com
|