Sains Malaysiana 45(2)(2016): 305–313

 

Haar Wavelet Method for Constrained Nonlinear Optimal Control Problems with Application to Production Inventory Model

(Kaedah Gelombang Kecil Haar untuk Masalah Kawalan Optimum Kekangan tak Linear dengan Model Aplikasi untuk Inventori Pengeluaran)

 

Waleeda Swaidan12* & Amran Hussin1

1Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

2Division of Basic Science, Faculty of Agriculture, University of Baghdad

Diserahkan: 2 Februari 2015/Diterima: 18 Ogos 2015

 

ABSTRACT

A new numerical method was proposed in this paper to address the nonlinear quadratic optimal control problems, with state and control inequality constraints. This method used the quasilinearization technique and Haar wavelet operational matrix to convert the nonlinear optimal control problem into a sequence of quadratic programming problems. The inequality constraints for trajectory variables were transformed into quadratic programming constraints using the Haar wavelet collocation method. The proposed method was applied to optimize the control of the multi-item inventory model with linear demand rates. By enhancing the resolution of the Haar wavelet, we can improve the accuracy of the states, controls and cost. Simulation results were also compared with other researchers' work.

Keywords: Direct method; Haar wavelet operational matrix; optimal control; quadratic programming problem

 

ABSTRAK

Kaedah berangka baru telah dicadangkan dalam kertas ini untuk menangani masalah kawalan optimum quadratik tak linear dengan kekangan keadaan serta kawalan ketidaksamaan. Kaedah ini menggunakan teknik quasipelinearan dan matriks operasi gelombang kecil Haar untuk menukar masalah kawalan optimum tak linear kepada suatu turutan masalah pengaturcaraan quadratik. Kekangan ketidaksamaan bagi pemboleh ubah trajektori diubah menjadi kekangan pengaturcaraan quadratik menggunakan kaedah kolokasi gelombang kecil Haar. Kaedah cadangan telah digunakan untuk mengoptimumkan kawalan model inventori item berbilang dengan kadar permintaan linear. Dengan mempertingkatkan resolusi gelombang kecil Haar, ketepatan keadaan, kawalan serta kos boleh ditambah baik. Keputusan simulasi juga dibandingkan dengan hasil penyelidikan lain.

Kata kunci: Kawalan optimum; kaedah langsung; masalah pengaturcaraan quadratik; matriks operasi gelombang kecil Haar

 

RUJUKAN

Aziz, I. & Siraj-ul-Islam. 2013. New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. Journal of Computational and Applied Mathematics 239: 333-345.

Balkhi, Z.T. & Benkherouf, L. 2004. On an inventory model for deteriorating items with stock dependent and time-varying demand rates. Computers and Operations Research 31(2): 223-240.

Bellman, R. & Kalaba, R. 1965. Quasilinearization and Nonlinear Boundary Value Problems. New York: Elsevier.

Bhatti, M.A. 2000. Practical Optimization Methods: With Mathematica Applications. New York: Springer.

Brewer, J. 1978. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems CAS-25(9): 772-781.

Chen, C.F. & Hsiao, C.H. 1999. Wavelet approach to optimizing dynamic systems. In Control Theory and Applications, IEE Proceedings 146(2): 213-219.

Chen, C. & Hsiao, H. 1997. Haar wavelet method for solving lumped and distributed parameter systems. IEE Proceeding on Control Theory and Application 144(1): 87-94.

Dai, R. & Cochran, J. 2009. Wavelet collocation method for optimal control problems. Journal of Optimization theory and Application 143: 265-278.

El-Gohary, A. & Elsayed, A. 2008. Optimal control of a multi-item inventory model. International Mathematical Forum 3(27): 1295-1312.

Han, Z. & Li, S. 2011. A new approach for solving optimal nonlinear control problems using decriminalization and rationalized Haar functions. Advanced Engineering Forum 1: 387-394.

Hsiao, C. & Wu, S. 2007. Numerical solution of time-varying functional differential equations via Haar wavelets. Applied Mathematics and Computation 188(1): 1049-1058.

Jaddu, H. 2002. Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials. Journal of the Franklin Institute 339: 479-498.

Jaddu, H. 1998. Numerical Methods for Solving Optimal Control Problems using Chebyshev Polynomials. PhD. Thesis, School of Information Science, Japan Advanced Institute of Science and Technology (Unpublished).

Lancaster, P. & Tismenetsky, M. 1985. The Theory of Matrices: With Applications. New York: Academic press.

Marzban, H. & Razzaghi, M. 2010. Rationalized Haar approach for nonlinear constrained optimal control problems. Applied Mathematical Modelling 34(1): 174-183.

Mehra, R. & Davis, R. 1972. A generalized gradient method for optimal control problems with inequality constraints and singular arcs. IEEE Transactions on Automatic Control AC-17: 69-72.

Omar, M. 2012. A replenishment inventory model for items under time-varying demand rates considering trade credit period and cash discount for a finite time horizon. Sains Malaysiana 41(4): 493-497.

Sethi, S. & Thompson, G. 2006. Optimal Control Theory. New York: Springer. pp. 153-184.

Siraj-ul-Islam, Šarler, B., Aziz, I. & Haq, F. 2011. Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. International Journal of Thermal Sciences 50(5): 686-697.

Siraj-ul-Islam, Aziz, I. & Šarler, B. 2010. The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Mathematical and Computer Modelling 52(9-10): 1577-1590.

Swaidan, W. & Hussin, A. 2013. Feedback control method using Haar wavelet operational matrices for solving optimal control problems. Abstract and Applied Analysis 2013: Article ID 240352.

 

*Pengarang untuk surat-menyurat; email: waleeda_um@yahoo.com

sebelumnya