Sains Malaysiana 45(3)(2016): 383–392
Improving the Productivity of Acid
Sulfate Soils for Rice Cultivation using Limestone, Basalt, Organic
Fertilizer and/or their Combinations
(Meningkatkan Produktiviti Tanah Asid Sulfat
Tanaman Padi menggunakan Batu Kapur,
Basalt, Baja Organik dan/atau Gabungannya)
J. SHAMSHUDDIN*,
Q.A.
PANHWAR,
M.A.R.S.
SHAZANA,
A.A.
ELISA,
C.I.
FAUZIAH
& U.A.
NAHER
Department
of Land Management, Faculty of Agriculture, Universiti Putra Malaysia
43400
Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan:
23 Januari 2015/Diterima: 23 September 2015
ABSTRACT
Acid sulfate soils are generally
not suitable for the crop production unless they are efficiently
improved. A study was conducted to improve the productivity of
acid sulfate soils for rice cultivation using ground magnesium
limestone (GML),
basalt and organic fertilizer. The study was conducted on rice
in laboratory, glasshouse and field. The pH of acid sulfate soils
was low and exchangeable Al was very high which affected rice
growth. The application of GML and
basalt increased soil pH and reduced Al toxicity. GML required
to ameliorate the soils for rice cultivation was 4 t ha-1.
Basalt in combination with organic fertilizer was a good soil
amendment, but required to be applied a few months ahead of rice
cultivation. Due to GML
or basalt application, rice plants grew well even
though water pH was below 5. The highest rice yield obtained was
4.0 t ha-1 season-1 for
Sulfaquepts and it was 7.5 t ha-1 season-1 for
Sulfosaprists. In general, the application of GML or
basalt in combination with organic fertilizer improved the productivity
of acid sulfate soils and consequently enhanced rice yield.
Keywords: Acid sulfate soil;
aluminum toxicity; iron toxicity; rice production; soil amendments
ABSTRAK
Asid tanah sulfat secara amnya
tidak sesuai untuk pengeluaran tanaman kecuali ditambah baik secara
cekap. Suatu kajian telah dijalankan untuk meningkatkan produktiviti
tanah sulfat asid untuk penanaman padi menggunakan batu kapur
magnesium (GML),
basalt dan baja organik. Kajian telah dijalankan ke atas tanaman
padi di dalam makmal, rumah kaca dan lapangan. pH tanah adalah
rendah dan pertukaran Al yang sangat tinggi memberi kesan kepada
pertumbuhan padi. Aplikasi GML dan
basalt ini meningkatkan pH tanah dan mengurangkan ketoksikan Al.
GML
yang diperlukan untuk memperbaiki tanah bagi penanaman
padi adalah 4 t ha-1.
Gabungan basalt dengan baja organik adalah baik untuk memperbaiki
keadaan tanah tetapi perlu diletakkan beberapa bulan lebih awal
sebelum padi ditanam. Penggunaan GML dan basalt menyebabkan tanaman padi menbesar dengan
baik walaupun pH air adalah di bawah 5. Untuk Sulfaquepts, hasil
padi tertinggi yang diperoleh ialah 4.0 t ha-1 musim-1 manakala
bagi Sulfosaprists adalah 7.5 t ha-1 musim-1.
Pada amnya, aplikasi GML atau basalt bersama baja organik
akan meningkatkan produktiviti tanah asid sulfat sekaligus meningkatkan
hasil padi.
Kata kunci: Ketoksikan aluminium; ketoksikan ferum; penambahbaikan
tanah; pengeluaran padi; tanah asid sulfat
RUJUKAN
Abed-Ashtiani,
F., Kadir, J., Selamat, A., Ahmad Husni, M.H. & Nasihi, A.
2012. Effects of foliar and root application of Si against rice
blast fungus in MR 219 rice variety. Plant Pathol. J. 28(2):
164-171.
Alva, A.K., Asher,
C.J. & Edwards, D.G. 1986. The role of calcium in alleviating
aluminum toxicity. Aust. J. Soil Res. 37: 375-383.
Bokhtiar, S.M.,
Hai-Rong, H., Yang-Rui, L. & Delvi, V.A. 2010. Effect of silicon
on yield contributing parameters and its accumulation in abaxial
epidermis of sugarcane leaf blades using energy dispersive X-ray
analysis. J. Plant Nut. 8(35): 1255-1275.
Bray, R.H. &
Kurtz, L.T. 1945. Determination of total, organic and available
forms of phosphorus in soils. Soil Sci. 59: 39-45.
de Coninck, F.
1978. Physico-chemical aspects of Pedogenesis. International
Training Center for Post-Graduate Soil Scientists, Ghent University,
Ghent, Belgium (Unpublished).
Dent, D.L. 1986.
Acid Sulfate Soil: A Baseline for Research and Development.
Wageningen, the Netherlands: ILRI. Publication.
Dobermann, A. &
Fairhurst, T. 2000. Rice: Nutrient Disorders and Nutrient Management.
Los Banos, the Philippines: Phosphate Institute of Canada and
International Rice Research Institute.
Enio, M.S.K., Shamshuddin,
J., Fauziah, C.I. & Husni, M.H.A. 2011. Pyritization of the
coastal sediments in the Kelantan Plains in the Malay Peninsula
during the Holocene. Am. J. Agri. Biol. Sci. 6: 393-402.
Horst, W.J., Rangel,
A.F., Eticha, D., Ischitani, M. & Rao, I.M. 2009. Aluminum
toxicity and resistance in Phaseolus vulgaris L. – Physiology
drives molecular biology. In Proc. 7th International Symposium
on Plant-Soil at Low pH, edited by Liao, H., Xian, X. &
Kochian, L. China: South China University of Technology Press.
pp. 53-54.
Ismail, H., Shamshuddin,
J. & Syed Omar, S.R. 1993. Alleviation of soil acidity in
a Malaysian ultisol and oxisol for corn growth. Plant Soil
151: 55-65.
Liew, Y.A., Syed
Omar, S.R., Husni, M.H.A., Zainal Abidin, M. & Abdullah, N.A.P.
2010. Effects of micronutrient fertilizers on the production of
MR 219 rice (Oryza sativa L.). Malays. J. Soil Sci.
14: 71-82.
Ljung, K., Maley,
F., Cook, A. & Weinstein, P. 2009. Acid sulfate soils and
human health-a millennium ecosystem assessment. Environ. Inter.
35: 1234-1242.
Muhrizal, S., Shamshuddin,
J., Che Fauziah, I. & Husni, M.H.A. 2006. Changes in
an iron-poor acid sulfate soil upon submergence. Geoderma 131:
110-122.
Muhrizal, S., Shamshuddin,
J., Husni, M.H.A. & Fauziah. I. 2003. Alleviation of aluminum
toxicity in an acid sulfate soil in Malaysia using organic materials.
Commun. Soil Sci. Plant Anal. 34: 2993-3011.
Nagabovanalli,
P.B., Chowdappa, N., Nagapa, C., Abbinaholalu, M.C., Thubinakere,
H.H. & Siddanagouda, P.U. 2009. Effects of calcium silicate
as a source of silicon and as amendment on growth and yield of
rice in coastal zone soils of Karnataka, South India. In Proc.
7th International Symposium on Plant- Soil at Low pH, edited
by Liao, H., Xian, X. & Kochian, L. China: South China University
of Technology Press. pp. 170-171.
Ohki, K. 1986.
Phothosynthesis, chlorophyll, and transpiration responses in aluminum
stressed wheat and sorghum. Crop Sci. 26: 572-575.
Palhares, M. 2000.
Recommendation for fertilizer application for soils via qualitative
reasoning. J. Agri. Syst. 67: 21-30.
Poon, Y.C. &
Bloomfield, C. 1977. The amelioration of acid sulfate soils with
respect to oil palm. Tropic. Agric. (Trinidad) 54: 289-305.
Ridolfi, M. &
Garrec, J.P. 2000. Consequences of the excess Al and a deficiency
in Ca and Mg for stomatal functioning and net carbon assimilation
of beech leaves. Annal. Sci. 57: 209-218.
Sasaki, M., Yamamoto,
Y., Ma, J.F. & Matsumoto, H. 1997. Early events induced by
aluminum stress in elongating cells of wheat root. Soil Sci.
Plant Nut. 43: 1009-1014.
Shamshuddin, J.
& Che Fauziah, I. 2010. Alleviating acid soil infertility
constraints using basalt, ground magnesium limestone and gypsum
in a tropical environment. Malays. J. Soil Sci. 14: 1-13.
Shamshuddin, J.,
Shariduddin, H.A.H., Che Fauziah, I., Edwards, D.G. & Bell,
L.C. 2010. Temporal changes in chemical properties of acid soil
profiles treated with magnesium limestone and gypsum. Pertanika
J. Tropic. Agri. Sci. 33: 277-295.
Shamshuddin, J.,
Muhrizal, S., Che Fauziah, I. & van Ranst, E. 2004. A laboratory
study of pyrite oxidation in an acid sulfate soils. Commun.
Soil Sci. Plant Anal. 35: 117-129.
Shamshuddin, J.,
Jamilah, I. & Ogunwale, J.A. 1995. Formation of hydroxyl-sulfates
from pyrite in coastal acid sulfate soil environments in Malaysia.
Commun. Soil Sci. Plant Anal. 26: 2769-2782.
Shamshuddin, J.
& Ismail, H. 1995. Reactions of ground magnesium limestone
and gypsum in soil soils with variable-charge minerals. Soil
Sci. Soc. Am. J. 59: 106-112.
Shamshuddin,
J., Che Fauziah, I. & Sharifuddin, H.A.H. 1991. Effects of
limestone and gypsum application to a Malaysian ultisol on soil
solution composition and yields of maize and groundnut. Plant
Soil 134(1): 45-52.
Shamshuddin,
J. & Auxtero, E.A. 1991. Soil solution composition and mineralogy
of some active acid sulfate soil as affected by laboratory incubation
with lime. Soil Sci. 152: 365-376.
Shazana,
M.A.R.S., Shamshuddin, J., Fauziah, C.I. & Syed Omar, S.R.
2013. Alleviating the infertility of an acid sulphate soil by
using ground basalt with or without lime and organic fertilizer
under submerged condition. Land Degrad. Develop. 24: 129-140.
Soo,
S.W. 1975. Semi-detailed Soil Survey of Kelantan Plain.
Kuala Lumpur: Ministry of Agriculture & Rural Development.
Suswanto,
T., Shamshuddin, J., Syed Omar, S.R., Mat, P. & Teh, C.B.S.
2007. Alleviating an acid sulfate soil cultivated to rice (Oryza
sativa) using ground magnesium limestone and organic fertilizer.
J. Soil Environ. 9: 1-9.
Ting, C.C., Rohani,
S., Diemont, W.S. & Aminuddin, B.Y. 1993. The development
of an acid sulfate area in former mangroves in Merbok, Kedah,
Malaysia. In Proc. Selected Paper of the Ho Chi Minh City Symposium
on Acid Sulfate Soils, edited by Dent, D.L. & van Mensvoort,
M.F.F. the Netherlands: Wageningen. pp. 95-101.
Tran,
K.T. & Vo, T.G. 2004. Effects of mixed organic and inorganic
fertilizers on rice yield and soil chemistry of the 8th crop on
heavy acid sulfate soil (Hydraquentic Sulfaquepts) in the Mekong
Delta of Vietnam. Proc. 6th International Symposium on Plant-Soil
at Low pH. 1-5 August, Sendai, Japan.
Yap,
C.L. 2012. Major Issues of Concern for World Rice Economy in
the Medium Term: An Economic Perspective. International Rice
Commission Newsletter. Available at: http://fao.org/ docrep/v6017t/V6017T01.
Accessed on 6th June 2014.
*Pengarang untuk surat-menyurat;
email: shamsud@upm.edu.my