| Sains Malaysiana 45(6)(2016): 989–998  
             
           Block
            Backward Differentiation Formulas for Solving First Order Fuzzy Differential
            Equations under Generalized Differentiability
            
           (Formula 
              Blok Pembezaan Kebelakang bagi Menyelesaikan Persamaan Pembezaan 
              Kabur Peringkat Pertama di bawah Kebolehbezaan Umum)  
               
             
           ISKANDAR SHAH MOHD ZAWAWI1 & ZARINA BIBI IBRAHIM2*
            
           
             
           1Department
            of Mathematicsm Faculty of Sciencem Universiti Putra Malaysia, 43400 Serdang,
            Selangor Darul Ehsan, Malaysia
            
           
             
           2Institute for
            Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul
            Ehsan, Malaysia
            
           
             
           Diserahkan: 7 April 2015/Diterima: 5 Januari 2015
            
           
             
           ABSTRACT
            
           In this paper, the fully implicit 2-point block backward
            differentiation formula and diagonally implicit 2-point block backward
            differentiation formula were developed under the interpretation of generalized
            differentiability concept for solving first order fuzzy differential equations.
            Some fuzzy initial value problems were tested in order to demonstrate the performance
            of the developed methods. The approximated solutions for both methods were in
            good agreement with the exact solutions. The numerical results showed that the
            diagonally implicit method outperforms the fully implicit method in term of
            accuracy.
            
           
             
           Keywords: Block; diagonally; fuzzy; implicit
            
           
             
           ABSTRAK
            
           Dalam kertas ini, formula 2-titik blok pembezaan kebelakang tersirat penuh dan formula 2-titik blok pembezaan
            kebelakang tersirat pepenjuru dibangunkan di bawah konsep kebolehbezaan umum
            bagi menyelesaikan persamaan pembezaan kabur peringkat pertama. Beberapa masalah-masalah nilai awal kabur diuji untuk menunjukkan
              prestasi kaedah yang dibangunkan. Penyelesaian yang
                dianggarkan bagi kedua-dua kaedah adalah dalam persetujuan yang baik dengan
                penyelesaian tepat. Keputusan berangka menunjukkan
                  kaedah tersirat pepenjuru mengatasi kaedah tersirat penuh dalam terma kejituan.
  
           
             
           Kata kunci: Blok; kabur; pepenjuru; tersirat
            
           RUJUKAN
            
           Abbasbandi, S. & Viranloo, T.A. 2002. Numerical solutions of fuzzy differential equations by Taylor
            method. Comp. Method in Applied Mathematics 2: 113-124.
  
           Ahmad, M.Z. & Hasan, M
            K. 2011. A new
              fuzzy version of Euler’s method for solving differential equations with fuzzy
              initial values. Sains Malaysiana 40(6): 651-657.
  
 Balooch Shahryari, M.R. & Salahshour, S.
            2012. Improved predictor corrector method for solving fuzzy differential
            equations under generalized differentiability. Journal of Fuzzy Set Valued
              Analysis 2012: 1-16.
  
           Bede, B., Bhaskar, T.G.
  & Lakshmikantham, V. 2007. Perspective of fuzzy initial value problems. Communications in Applied Analysis 11: 339-358.
  
 Bede, B. & Gal, S.G. 2005. Generalizations of the differentiability of fuzzy-number-valued
            functions with applications to fuzzy differential equations. Fuzzy
              Sets and Systems 151: 581-599.
  
           Chalco-Cano, Y. &
            Roman-Flores, H. 2008. On new solutions of fuzzy differential equations. Chaos,
              Solitons and Fractals 38: 112-119.
  
 Ghazanfari, B. & Shakerami, A. 2012.
            Numerical solutions of fuzzy differential equations by extended
            Runge-Kutta-like formulae of order four. Fuzzy Sets and Systems 189(1):
            74-91.
  
           Ibrahim, Z.B., Suleiman, M.B. & Nasir,
            N.A.A.M. 2011. Convergence of the 2-point block backward
              differentiation formulas. Applied Mathematical Sciences 5(70):
            3473-3480.
  
           Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I.
            2008. Fixed coefficients block backward differentiation formulas for the
            numerical solution of stiff ordinary differential equations. European
              Journal of Scientific Research 21(3): 508-520.
  
           Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I.
            2007. Implicit r-point block backward differentiation formula
              for solving first order stiff odes. Applied Mathematics and
                Computation 186: 558-565.
  
           Ibrahim, Z.B., Johari, R.
  & Ismail, F. 2003. On the stability of block backward differentiation formulae. Matematika 19(2): 83-89.
  
 Mondal, S.P. & Roy, T.K. 2013. First order
            linear homogeneous ordinary differential equation in fuzzy environment based on laplace transform. Journal of Fuzzy Set Valued
              Analysis 2013: 1-18.
  
           Puri, M.L. & Ralescu, D. 1983. Differential for fuzzy
            function. J. Math. Anal. Appl. 91: 552-558.
  
           Shokri, J. 2007. Numerical solution of
            fuzzy differential equations. Applied Mathematical Sciences 1:
            2231-2246.
  
           Zawawi, I.S.M., Ibrahim, Z.B., Ismail, F. & Majid, Z.A. 2012. Diagonally implicit block backward differentiation formulas
            for solving ordinary differential equations. International
              Journal of Mathematics and Mathematical Sciences Article ID 767328.
  
           
             
           
             
           *Pengarang untuk surat-menyurat: zarinabb@upm.edu.my     |