Sains Malaysiana 45(9)(2016): 1299–1310
Memory Enhancement in Rats by Soybean
and Tempeh Extracts is Associated with Improved Cholinergic
and Reduced Neuroinflammatory Activities
(Peningkatan
Daya Ingatan dalam
Tikus oleh Ekstrak Soya dan Tempeh dikaitkan dengan
Peningkatan Aktiviti
Kolinergik dan
Pengurangan Aktiviti Keradangan)
ALIA
HAMAD1,
VASUDEVAN
MANI1,2,4*, KALAVATHY RAMASAMY1,2,
SIONG
MENG
LIM1,2
& ABU
BAKAR
ABDUL
MAJEED1,2
1Faculty of Pharmacy, Universiti Teknologi MARA, 42300
Bandar Puncak Alam,
Selangor,
Darul
Ehsan, Malaysia
2Brain Degeneration and Therapeutics
Group, Pharmaceutical & Life Sciences Community of Research
(CoRe), Universiti Teknologi MARA, 40450 Shah Alam,
Selangor Darul Ehsan,
Malaysia
3Collaborative Drug Discovery Research
(CDDR) Group, Pharmaceutical & Life Sciences Community of Research
(CoRe), Universiti
Teknologi MARA, 40450 Shah Alam,
Selangor
Darul Ehsan, Malaysia
4Department of Pharmacology and Toxicology,
College of Pharmacy, Qassim University,
Buraidah
Kingdom
of Saudi Arabia
Diserahkan: 2 Disember
2015/Diterima: 3 Mei 2016
ABSTRACT
The continued progression of
neurodegeneration may result in dementia. The present study compared
the neuroprotective activities between soybean and tempeh
extracts in rats. The extracts were administered orally at 10,
20 and 40 mg/kg for 15 days. Radial arm maze and elevated plus maze
served as exteroceptive behavioural models
for memory measuring. Brain cholinergic activities (acetylcholine
and acetylcholinesterase) and neuroinflammatory
related cytokines interleukin 1β and interleukin-10 were also
tested. Soybean and tempeh extracts significantly improved
memory, but overall 40 mg/kg tempeh showed better improvement
(p<0.05). The tempeh extracts at 20 and 40 mg/kg
exhibited a significant (p<0.05) increase and decrease
in the level of acetylcholine and acetylcholinesterase activities,
respectively. Tempeh extract (40 mg/kg) resulted in greater
reduction (p<0.05) of inflammation than soybean extract.
Altogether, tempeh extract may be beneficial in the management
and prevention of dementia and Alzheimer’s disease.
Keywords: Cholinergic; memory;
neuroinflammation; soybean; Tempeh
ABSTRAK
Neurodegradasi yang berlanjutan boleh
menyebabkan penyakit
demensia. Kajian ini
membandingkan keupayaan
ekstrak soya dan tempeh untuk melindungi otak menggunakan tikus. Ekstrak tersebut telah
diberi secara
oral pada 10, 20 dan 40 mg/kg selama 15 hari. Pengukuran daya
ingatan dijalankan
dengan menggunakan pagar sesat bentuk
jejari dan pagar sesat bersilang
tinggi yang merupakan
model rangsangan persekitaran.
Aktiviti
kolinergik otak (asetilkolina dan asetilkolinesterase) dan sitokin yang berkaitan dengan keradangan otak IL-1β dan
IL10
turut diuji.
Ekstrak soya dan tempeh mampu meningkatkan daya ingatan, namun 40 mg/kg ekstrak tempeh menunjukkan peningkatan daya ingatan yang paling ketara (p<0.05). Ekstrak tempeh (20 dan 40 mg/kg) menunjukkan peningkatan dan penurunan yang berkesan (p<0.05) dalam aktiviti asetilkolina (p<0.05) dan asetilkolinesterase. Ekstrak tempeh 40 mg/kg mengurangkan keradangan (p<0.05) yang lebih
ketara berbanding
dengan ekstrak soya. Sebagai kesimpulan, ekstrak tempeh mungkin berkesan mencegah demensia dan juga penyakit Alzheimer.
Kata kunci: Daya
ingatan; kolinergik;
radang otak; soya; tempeh
RUJUKAN
Ahmad, A., Ramasamy, K., Majeed, A.B.A. & Mani, V. 2015. Enhancement of β-secretase inhibition and antioxidant activities
of tempeh, a fermented soybean cake through enrichment of
bioactive aglycones. Pharmaceutical
Biology 53(5): 758-766.
Ahmad, A., Ramasamy, K., Jaafar, S.M., Majeed, A.B.A. &
Mani, V. 2014. Total isoflavones
from soybean and tempeh reversed scopolamine-induced amnesia,
improved cholinergic activities and reduced neuroinflammation.
Food and Chemical Toxicology 65(3): 120-128.
Akiyama,
H., Barger, S., Barnum, S., Bradt, B.,
Bauer, J. & Cole, G.M. 2000. Inflammation
and Alzheimer’s disease. Neurobiology of Aging 21(3):
383-421.
Auld, D.S., Kornecook, T.J., Bastianetto, S. & Quirion, R.
2002. Alzheimer’s disease and the basal forebrain cholinergic system:
relations to β-amyloid peptides, cognition, and treatment strategies.
Progress in Neurobiology 68(3): 209- 245.
Bagheri, M., Joghataei,
M.T., Mohseni, S. & Roghani,
M. 2011. Genistein ameliorates learning
and memory deficits in amyloid β(1-40)
rat model of Alzheimer’s disease. Neurobiology of Learning and
Memory 95(3): 270-276.
Barnes,
S. 2010. The biochemistry, chemistry and physiology
of the isoflavones in soybeans and their food products.
Lymphatic Research and Biology 8(1): 89-98.
Boast,
C.A., Walsh, T.J. & Bartolomeo, A. 2000. The
delayed non-match-to-sample radial arm maze task. Application
to Models of Alzheimer’s Disease. 2nd ed. London: CRC Press.
Chang, C.T., Hsu, C.K., Chou, S.T., Chen, Y.C., Huang, F.S. &
Chung, Y.C. 2009. Effect of fermentation time on the antioxidant activities of tempeh
prepared from fermented soybean using Rhizopus
oligosporus. International Journal
of Food Science & Technology 44(4): 799-806.
Danciu, C.,
Soica, C., Csanyi,
E., Ambrus, R., Feflea, S., Peev, C. & Dehelean, C. 2012. Changes
in the anti-inflammatory activity of soy isoflavonoid
genistein versus genistein
incorporated in two types of cyclodextrin
derivatives. Chemistry Central Journal 6(1): 58.
Devi, M.K.A., Gondi, M., Sakthivelu, G.,
Giridhar, P., Rajasekaran,
T. & Ravishankar, G.A. 2009. Functional
attributes of soybean seeds and products, with reference to isoflavone content and antioxidant activity. Food Chemistry
114(3): 771-776.
Ding, B.J., Ma, W.W., He, L.L., Zhou, X., Yuan, L.H., Yu, H.L., Feng,
J.F. & Xiao, R. 2011. Soybean isoflavone
alleviates β-amyloid 1-42 induced inflammatory response to
improve learning and memory ability by down regulation of Toll-like
receptor 4 expression and nuclear factor-κB
activity in rats. International Journal of Developmental Neuroscience
29(5): 537-542.
Ecobichon, D.J. 1997. The
Basis of Toxicity Testing. 2nd ed. Boca Raton, Florida:
CRC Press.
Foyet, H.S.,
Hritcu, L., Ciobica,
A., Stefan, M., Kamtchouing, P. &
Cojocaru, D. 2011. Methanolic
extract of Hibiscus asper leaves improves spatial memory
deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s
disease. Journal of Ethnopharmacology 133(2): 773-779.
Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell
140(6): 918-934.
Goodman, M.T., Wilkens, L.R., Hankin, J.H.,
Lyu, L.C., Wu, A.H. & Kolonel,
L.N. 1997. Association of soy and fiber consumption with
the risk of endometrial cancer. American Journal of Epidemiology
146(4): 294-306.
Hwang, Y.W., Kim, S.Y., Jee, S.H., Kim,
Y.N. & Nam, C.M. 2009. Soy food consumption and risk
of prostate cancer: A meta-analysis of observational studies. Nutrition
and Cancer 61(5): 598-606.
Korde, L.A., Wu, A.H., Fears, T., Nomura, A.M.Y., West, D.W., Kolonel, L.N., Pike, M.C., Hoover, R.N. & Ziegler, R.G.
2009. Childhood soy intake and breast cancer risk
in Asian American women. Cancer Epidemiology Biomarkers
& Prevention 18(4): 1050-1059.
Kovarik, Z., Radic,
Z., Berman, H.A., Simeon-Rudolf, V., Reiner, E. & Taylor, P.
2003. Acetylcholinesterase active centre and gorge
conformations analysed by combinatorial
mutations and enantiomeric phosphonates. Biochemical Journal
373(1): 33-40.
Kreijkamp-Kaspers, S.,
Kok, L., Grobbee,
D.E., de Haan, E.H., Aleman, A., Lampe,
J.W. & Van der Schouw, Y.T. 2004. Effect of soy protein containing isoflavones
on cognitive function, bone mineral density, and plasma lipids in
postmenopausal women: a randomized controlled trial. JAMA 292(1):
65-74.
Liang, W., Lee, A.H., Binns, C.W., Huang,
R., Hu, D. & Shao, H. 2009. Soy consumption reduces
risk of ischemic stroke: A case-control study in Southern China.
Neuroepidemiology 33(2): 111-116.
Lio, D., Licastro, F., Scola, L., Chiappelli,
M., Grimald, L.M., Crivello,
A., Colonna-Romano, G., Candore, G., Franceschi, C. & Caruso, C. 2003. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease.
Genes and Immunity 4(3): 234-238.
Mani, V., Ramasamy, K., Ahmad, A., Parle,
M., Shah, S.A.A. & Majeed, A.B.A.
2012. Protective
effects of total alkaloidal extract from Murraya
koenigii leaves on experimentally
induced dementia. Food and Chemical Toxicology 50(3-4): 1036-1044.
Nagarajan, S.,
Burris, R.L., Stewart, B.W., Wilkerson, J.E. & Badger, T.M.
2008. Dietary
soy protein isolate ameliorates atherosclerotic lesions in apolipoprotein
E-deficient mice potentially by inhibiting monocyte chemoattractant
protein-1 expression. The Journal of Nutrition 138(2): 332-337.
Overk, C.R.,
Felder, C.C., Tu, Y., Schober,
D.A., Bales, K.R., Wuu, J. & Mufson,
E.J. 2010. Cortical M1 receptor concentration increases without a concomitant
change in function in Alzheimer’s disease. Journal of Chemical
Neuroanatomy 40(1): 63-70.
Pan, M.H., Lai, C.S. & Ho, C.T. 2010. Anti-inflammatory activity of natural dietary flavonoids.
Food & Function 1(1): 15-31.
Patel,
N., Paris, D., Mathura, V., Quadros, A.,
Crawford, F. & Mullan, M. 2005. Inflammatory
cytokine levels correlate with amyloid load in transgenic mouse
models of Alzheimer’s disease. Journal of Neuroinflammation
2(1): 9.
Pepeu, G.
& Giovannini, M.G. 2010. Cholinesterase inhibitors and memory. Chemico-Biological
Interactions 187(1-3): 403-408.
Pipe, E.A., Gobert, C.P., Capes, S.E.,
Darlington, G.A., Lampe, J.W. & Duncan, A.M. 2009. Soy
protein reduces serum LDL cholesterol and the LDL cholesterol: HDL
Cholesterol and Apolipoprotein B: Apolipoprotein A-I ratios in adults
with Type 2 Diabetes. The Journal of Nutrition 139(9): 1700-1706.
Pyo,
Y.H. & Seong, K.S. 2009. Hypolipidemic
effects of Monascus-fermented soybean
extracts in rats fed a high-fat and -cholesterol diet. Journal
of Agricultural and Food Chemistry 57(18): 8617-8622.
Reynolds, K.,
Chin, A., Lees, K.A., Nguyen, A., Bujnowski,
D. & He, J. 2006.
A meta-analysis of the effect of soy protein supplementation on serum
lipids. The American Journal of Cardiology 98(5):
633-640.
Rubio-Perez, J.M.
& Morillas-Ruiz, J.M. 2012. A Review: Inflammatory process
in Alzheimer’s disease, role of cytokines. The Scientific World
Journal 2012: Article ID. 756357.
Samadi, A., Chioua, M., Bolea, I., de Los Rios,
C., Iriepa, I., Moraleda,
I., Bastida, A., Esteban, G., Unzeta,
M., Galvez, E. & Marco-Contelles,
J. 2011. Synthesis, biological
assessment and molecular modelling of new multipotent MAO and cholinesterase
inhibitors as potential drugs for the treatment of Alzheimer’s disease.
European Journal of Medicinal Chemistry 46(9): 4665-4668.
Titus, A.D.J.,
Shankaranarayana Rao, B.S., Harsha, H.N., Ramkumar, K., Srikumar, B.N., Singh,
S.B., Chattarji, S. & Raju, T.R. 2007. Hypobaric hypoxia-induced dendritic
atrophy of hippocampal neurons is associated with cognitive impairment
in adult rats. Neuroscience 145(1): 265-278.
Town, T., Nikolic,
V. & Tan, J. 2005.
The microglial “activation” continuum: from innate to adaptive responses.
Journal of Neuroinflammation 2(1):
1-10.
Vasudevan, M. & Parle,
M. 2006.
Pharmacological actions of Thespesia
populnea relevant to Alzheimer’s disease.
Phytomedicine 13(9-10): 677-687.
Vasudevan, M. & Parle,
M. 2007.
Memory enhancing activity of Anwala churna (Emblica officinalis
Gaertn.): an Ayurvedic
preparation. Physiology & Behavior 91(1): 46-54.
Villa, P., Costantini, B., Suriano, R., Perri, C., Macrì, F., Ricciardi, L., Panunzi, S. &
Lanzone, A. 2009. The differential effect of the
phytoestrogen genistein on cardiovascular
risk factors in postmenopausal women: Relationship with the metabolic
status. Journal of Clinical Endocrinology & Metabolism 94(2):
552-558.
Vizi, E.S., Harsinc Jr, L., Duncalf, D., Nagashima, H., Potter, P. & Foldes,
F.F. 1985.
A simple and sensitive method of acetylcholine identification and
assay: Bioassay combined with minicolumn
gel filtration or high-performance liquid chromatography. Journal
of Pharmacological Methods 13(3): 201-211.
Wei, Q.K., Jone, W.W. & Fang, T.J. 2004. Study on isoflavones
isomers contents in Taiwan’s Soybean and GM Soybean. Journal
of Food and Drug Analysis 12(4): 324-331.
Winter, C.D.,
Iannotti, F., Pringle, A.K., Trikkas,
C., Clough, G.F. & Church, M.K. 2002. A microdialysis
method for the recovery of IL-1β, IL-6 and nerve growth factor
from human brain in vivo. Journal of Neuroscience
Methods 119(1): 45-50.
Yang, H., Jin, G., Ren, D., Luo, S. & Zhou, T. 2011. Mechanism of
isoflavone aglycone’s effect on
cognitive performance of senescence-accelerated mice. Brain
Cognition 76(1): 206-210.
Zheng, H., Youdim, M.B.H. & Fridkin, M.
2010.
Site-activated chelators targeting acetylcholinesterase and monoamine
oxidase for Alzheimer’s therapy. ACS Chemical Biology
5(6): 603-610.
*Pengarang
untuk surat-menyurat;
email: vasudevan@puncakalam.uitm.edu.my
|