Sains Malaysiana 46(12)(2017): 2375–2381

http://dx.doi.org/10.17576/jsm-2017-4612-14

 

Do Aquatic Macrophytes Configuration Mode Impact Water Quality?

(Adakah Mod Konfigurasi Akua Makrofit Mengesan Kualiti Air?)

 

HUI-HUI WANG, JING-LAN LIU, RONG ZHANG, JIA-KAI LIU, YU-QI ZOU

& ZHEN-MING ZHANG*

 

College of Nature Conservation, Beijing Forestry University, Beijing 100083, China

 

Diserahkan: 3 Mac 2014/Diterima: 25 April 2017

 

ABSTRACT

This paper had selected watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) and yellow-flowered iris (Iris wilsonii), in showing the water purification through different configuration. AFIs with different combination of aquatic plants were set up to purify the water quality for 50 days. This paper aimed to evaluate chemical and vegetative characteristics of each type of plant and also to find configuration of aquatic plants to maximize the contaminants removal efficiency by artificial floating island (AFI). The result indicated that the trophic waterbody promote the growth of plants and all of the AFIs have the ability to purify water and reduce contaminants. However, the most effective way is by combination of these three aquatic plants which has strong capacity to remove COD, NO3-, total nitrogen, total phosphorous and improve pH levels. Watermifoil (Myriophyllum verticillatum Linn.) is better than yellow-flowered iris (Iris wilsonii) and softstem bulrush (Scirpus validus Vahl) in disposing water pollutants.

 

Keywords: Aquatic plants; configuration; water purification

ABSTRAK

Kertas ini telah memilih tumbuhan watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) dan yellow-flowered iris (Iris wilsonii) yang menulenkan air melalui konfigurasi berbeza. AFI dengan kombinasi berbeza tumbuhan akuatik disediakan bagi menulenkan air selama 50 hari. Kajian ini bertujuan menilai ciri kimia dan vegetatif setiap tumbuhan yang dikaji di samping mencari konfigurasi tumbuhan akuatik bagi memaksimumkan kecekapan penyingkiran bahan cemar melalui pulau terapung buatan (AFI). Keputusan kajian menunjukkan jasad air trofik menggalakkan pertumbuhan tumbuhan dan semua kombinasi AFI berupaya untuk menulenkan air dan mengurangkan bahan cemar. Kombinasi yang paling berkesan adalah kombinasi ketiga-tiga tumbuhan kerana mempunyai kapasiti yang tinggi untuk menyingkirkan COD, NO3-, jumlah nitrogen, jumlah fosforus dan memperbaiki aras pH. Watermifoil (Myriophyllum verticillatum Linn.) adalah lebih baik berbanding yellow-flowered iris (Iris wilsonii) untuk digabungkan dengan softstem bulrush (Scirpus validus Vahl) dalam menyingkirkan bahan cemar.

 

Kata kunci: Konfigurasi; penulenan air; tumbuhan akuatik

RUJUKAN

Arts, G.H. 2002. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquatic Botany 73(4): 373-393.

Bornette, G. & Puijalon, S. 2011. Response of aquatic plants to abiotic factors: A review. Aquatic Sciences 73(1): 1-14.

Boyd, C.E. 1970. Production, mineral accumulation and pigment concentrations in Typha latifolia and Scirpus americanus. Ecology 51(2): 285-290.

De Stefani, G., Tocchetto, D., Salvat, M. & Borin, M. 2011. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 674(1): 157-167.

Denny, P. 1980. Solute movement in submerged angiosperms. Biological Reviews: 55: 65-92.

Dunabin, J.S. & Bowmer, K.H. 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment 111(2-3): 151-168.

Elankumaran, R., Raj, M.B. & Madhyastha, M.N. 2003. Biosorption of copper from contaminated water by Hydrilla verticillata Casp. and Salvinia sp. Green Pages: Environmental News Sources.

Gersberg, R.M., Elkin, B.V., Lyon, S.R. & Goldman, C.R. 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research 20(3): 363-368.

Hu, M.H., Yuan, J.H., Yang, X.E. & He, Z.L. 2010. Effects of temperature on purification of eutrophic water by floating eco-island system. Acta Ecologica Sinica 30(6): 310-318.

Hunter, R.G., Combs, D.L. & George, D.B. 2001. Nitrogen, phosphorous, and organic carbon removal in simulated wetland treatment systems. Archives of Environmental Contamination and Toxicology 41(3): 274-281.

James, W.F., Barko, J.W. & Eakin, H.L. 2004. Impacts of sediment dewatering and rehydration on sediment nitrogen concentration and macrophyte growth. Canadian Journal of Fisheries and Aquatic Sciences 61(4): 538-546.

Jeppesen, E., Sondergaard, M. & Christofferson, K. 1997. The structuring role of submerged macrophytes in lakes. Ecological Studies 131: 427-441.

Juwarkar, A.S., Oke, B., Juwarkar, A. & Patnaik, S.M. 1995. Domestic wastewater treatment through constructed wetland in India. Water Science and Technology 32(3): 291-294.

Khan, F.A. & Ansari, A.A. 2005. Eutrophication: An ecological vision. The Botanical Review 71(4): 449-482.

Lacoul, P. & Freedman, B. 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany 84(1): 3-16.

Madsen, T.V. & Cedergreen, N. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47(2): 283-291.

Murphy, K. 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany 73(4): 287-324.

Nakai, S., Zou, G., Okuda, T., Tsai, T.Y. & Song, X. 2010. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands. Allelopathy Journal 26(1): 113-121.

Nakamura, K. & Mueller, G. 2008. Review of the performance of the artificial floating island as a restoration tool for aquatic environments. World Environmental and Water Resources Congress.

Okia, O. 1993. Characterization of wastewater purification by Cyperus papyrus floating in segmented channel. Thesis, IHE Delft Institute for Water Education. Netherland (Unpublished).

Smolders, A.J.P., Lucassen, E. & Roelofs, J.G.M. 2002. The isoetid environment: Biogeochemistry and threats. Aquatic Botany 73(4): 325-350.

Stewart, F.M., Mulholland, T., Cunningham, A.B., Kania, B.G. & Osterlund, M.T. 2008. Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes-results of laboratory-scale tests. Land Contamination and Reclamation 16: 25.

Yao, K.K., Song, S.M., Zhang, Z.M., Xu, J., Zhang, R., Liu, J.K., Cheng, L.X. & Liu, J.L. 2011. Vegetation characteristics and water purification by artificial floating island. African Journal of Biotechnology 10: 19119-19125.

Zhao, F., Xi, S., Yang, X., Li, J., Gu, B. & He, Z. 2012. Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering 40: 53-60.

Zhu, L., Li, Z. & Ketola, T. 2011. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecological Engineering 37: 1460-1466.

 

 

*Pengarang untuk surat-menyurat; email: zhenmingzhang@bjfu.edu.cn

 

 

 

 

 

sebelumnya