Sains Malaysiana 46(12)(2017): 2375–2381
http://dx.doi.org/10.17576/jsm-2017-4612-14
Do Aquatic Macrophytes Configuration
Mode Impact Water Quality?
(Adakah Mod Konfigurasi Akua Makrofit Mengesan
Kualiti Air?)
HUI-HUI
WANG,
JING-LAN
LIU,
RONG
ZHANG,
JIA-KAI
LIU,
YU-QI
ZOU
& ZHEN-MING
ZHANG*
College of Nature
Conservation, Beijing Forestry University, Beijing 100083, China
Diserahkan: 3 Mac 2014/Diterima:
25 April 2017
ABSTRACT
This paper had selected watermifoil
(Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus
validus Vahl) and yellow-flowered iris (Iris wilsonii),
in showing the water purification through different configuration.
AFIs
with different combination of aquatic plants were set up to purify
the water quality for 50 days. This paper aimed to evaluate chemical
and vegetative characteristics of each type of plant and also to
find configuration of aquatic plants to maximize the contaminants
removal efficiency by artificial floating island (AFI). The result indicated that the trophic waterbody promote
the growth of plants and all of the AFIs
have the ability to purify water and reduce contaminants. However,
the most effective way is by combination of these three aquatic
plants which has strong capacity to remove COD, NO3-,
total nitrogen, total phosphorous and improve pH levels. Watermifoil
(Myriophyllum verticillatum Linn.) is better than yellow-flowered
iris (Iris wilsonii) and softstem bulrush (Scirpus validus
Vahl) in disposing water pollutants.
Keywords: Aquatic plants; configuration;
water purification
ABSTRAK
Kertas ini telah memilih tumbuhan
watermifoil (Myriophyllum veticillatum Linn.), softstem
bulrush (Scirpus validus Vahl) dan yellow-flowered iris (Iris
wilsonii) yang menulenkan air melalui konfigurasi berbeza. AFI dengan
kombinasi berbeza tumbuhan akuatik disediakan bagi menulenkan air
selama 50 hari. Kajian ini bertujuan menilai ciri kimia dan vegetatif
setiap tumbuhan yang dikaji di samping mencari konfigurasi tumbuhan
akuatik bagi memaksimumkan kecekapan penyingkiran bahan cemar melalui
pulau terapung buatan (AFI).
Keputusan kajian menunjukkan jasad air trofik menggalakkan pertumbuhan
tumbuhan dan semua kombinasi AFI berupaya untuk menulenkan air dan
mengurangkan bahan cemar. Kombinasi yang paling berkesan adalah
kombinasi ketiga-tiga tumbuhan kerana mempunyai kapasiti yang tinggi
untuk menyingkirkan COD,
NO3-, jumlah nitrogen, jumlah fosforus dan
memperbaiki aras pH. Watermifoil (Myriophyllum verticillatum
Linn.) adalah lebih baik berbanding yellow-flowered iris (Iris
wilsonii) untuk digabungkan dengan softstem bulrush (Scirpus
validus Vahl) dalam menyingkirkan bahan cemar.
Kata kunci: Konfigurasi; penulenan air; tumbuhan akuatik
RUJUKAN
Arts, G.H. 2002.
Deterioration of atlantic soft water macrophyte communities by acidification,
eutrophication and alkalinisation. Aquatic Botany 73(4):
373-393.
Bornette, G. &
Puijalon, S. 2011. Response of aquatic plants to abiotic factors:
A review. Aquatic Sciences 73(1): 1-14.
Boyd, C.E. 1970.
Production, mineral accumulation and pigment concentrations in Typha
latifolia and Scirpus americanus. Ecology 51(2):
285-290.
De Stefani, G.,
Tocchetto, D., Salvat, M. & Borin, M. 2011. Performance of a
floating treatment wetland for in-stream water amelioration in NE
Italy. Hydrobiologia 674(1): 157-167.
Denny, P. 1980.
Solute movement in submerged angiosperms. Biological Reviews:
55: 65-92.
Dunabin, J.S. &
Bowmer, K.H. 1992. Potential use of constructed wetlands for treatment
of industrial wastewaters containing metals. Science of the Total
Environment 111(2-3): 151-168.
Elankumaran, R.,
Raj, M.B. & Madhyastha, M.N. 2003. Biosorption of copper from
contaminated water by Hydrilla verticillata Casp. and Salvinia
sp. Green Pages: Environmental News Sources.
Gersberg, R.M.,
Elkin, B.V., Lyon, S.R. & Goldman, C.R. 1986. Role of aquatic
plants in wastewater treatment by artificial wetlands. Water
Research 20(3): 363-368.
Hu, M.H., Yuan,
J.H., Yang, X.E. & He, Z.L. 2010. Effects of temperature on
purification of eutrophic water by floating eco-island system. Acta
Ecologica Sinica 30(6): 310-318.
Hunter, R.G., Combs,
D.L. & George, D.B. 2001. Nitrogen, phosphorous, and organic
carbon removal in simulated wetland treatment systems. Archives
of Environmental Contamination and Toxicology 41(3): 274-281.
James, W.F., Barko,
J.W. & Eakin, H.L. 2004. Impacts of sediment dewatering and
rehydration on sediment nitrogen concentration and macrophyte growth.
Canadian Journal of Fisheries and Aquatic Sciences 61(4):
538-546.
Jeppesen, E., Sondergaard,
M. & Christofferson, K. 1997. The structuring role of submerged
macrophytes in lakes. Ecological Studies 131: 427-441.
Juwarkar, A.S.,
Oke, B., Juwarkar, A. & Patnaik, S.M. 1995. Domestic wastewater
treatment through constructed wetland in India. Water Science
and Technology 32(3): 291-294.
Khan, F.A. &
Ansari, A.A. 2005. Eutrophication: An ecological vision. The
Botanical Review 71(4): 449-482.
Lacoul, P. &
Freedman, B. 2006. Relationships between aquatic plants and environmental
factors along a steep Himalayan altitudinal gradient. Aquatic
Botany 84(1): 3-16.
Madsen, T.V. &
Cedergreen, N. 2002. Sources of nutrients to rooted submerged macrophytes
growing in a nutrient-rich stream. Freshwater Biology 47(2):
283-291.
Murphy, K. 2002.
Plant communities and plant diversity in softwater lakes of northern
Europe. Aquatic Botany 73(4): 287-324.
Nakai, S., Zou,
G., Okuda, T., Tsai, T.Y. & Song, X. 2010. Anti-cyanobacterial
allelopathic effects of plants used for artificial floating islands.
Allelopathy Journal 26(1): 113-121.
Nakamura, K. &
Mueller, G. 2008. Review of the performance of the artificial floating
island as a restoration tool for aquatic environments. World
Environmental and Water Resources Congress.
Okia, O. 1993.
Characterization of wastewater purification by Cyperus papyrus
floating in segmented channel. Thesis, IHE Delft Institute for
Water Education. Netherland (Unpublished).
Smolders, A.J.P.,
Lucassen, E. & Roelofs, J.G.M. 2002. The isoetid environment:
Biogeochemistry and threats. Aquatic Botany 73(4): 325-350.
Stewart, F.M.,
Mulholland, T., Cunningham, A.B., Kania, B.G. & Osterlund, M.T.
2008. Floating islands as an alternative to constructed wetlands
for treatment of excess nutrients from agricultural and municipal
wastes-results of laboratory-scale tests. Land Contamination
and Reclamation 16: 25.
Yao, K.K., Song,
S.M., Zhang, Z.M., Xu, J., Zhang, R., Liu, J.K., Cheng, L.X. &
Liu, J.L. 2011. Vegetation characteristics and water purification
by artificial floating island. African Journal of Biotechnology
10: 19119-19125.
Zhao, F., Xi, S.,
Yang, X., Li, J., Gu, B. & He, Z. 2012. Purifying eutrophic
river waters with integrated floating island systems. Ecological
Engineering 40: 53-60.
Zhu, L., Li, Z.
& Ketola, T. 2011. Biomass accumulations and nutrient uptake
of plants cultivated on artificial floating beds in China’s rural
area. Ecological Engineering 37: 1460-1466.
*Pengarang untuk surat-menyurat; email:
zhenmingzhang@bjfu.edu.cn
|