SSains Malaysiana 46(2)(2017): 327–333
http://dx.doi.org/10.17576/jsm-2017-4602-18
Unsteady Magnetoconvective Flow of Bionanofluid
with Zero Mass Flux Boundary Condition
(Aliran tak Mantap Magneto-Perolakan bagi
Bionanobendalir dengan Keadaan Sempadan Fluks Jisim Sifar)
MD.
FAISAL
MD.
BASIR1*,
M.J.
UDDIN1,2
& A.I. MD.
ISMAIL1
1School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang
Malaysia
2American International
University- Bangladesh, Banani Dhaka, 1213, Bangladesh
Diserahkan: 24
Mac 2015/Diterima: 9 Mei 2016
ABSTRACT
Induced magnetic field stagnation
point flow for unsteady two-dimensional laminar forced convection
of water based nanofluid containing microorganisms along a vertical
plate has been investigated. We have incorporated zero mass flux
boundary condition to get physically realistic results. The boundary
layer equations with three independent variables are transformed
into a system of ordinary differential equations by using appropriate
similarity transformations. The derived equations are then solved
numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg
algorithm to solve the system of similarity differential equations.
The effects of the governing parameters on the dimensionless velocity,
induced magnetic field, temperature, nanoparticle volume fraction,
density of motile microorganisms, skin friction coefficient, local
Nusselt number and motile density of microorganisms transfer rate
are illustrated graphically and tabular form. It is found that
the controlling parameters strongly affect the fluid flow and
heat transfer characteristics. We compare our numerical results
with published results for some limiting cases and found excellent
agreement.
Keywords: Forced convection;
induced magnetic field; microorganisms; nanofluid; unsteady; zero
mass flux
ABSTRAK
Medan magnet teraruh pada titik
genangan untuk aliran tak mantap lamina dua dimensi perolakan
dipaksa daripada nanobendalir berasaskan air yang mengandungi
mikroorganisma bersama plat menegak telah dikaji. Kami telah memasukkan
keadaan sempadan fluks jisim sifar untuk mendapatkan keputusan
yang realistik. Persamaan lapisan sempadan dengan tiga pembolehubah
diubah menjadi sistem persamaan pembezaan biasa dengan menggunakan
persamaan transformasi serupa yang sesuai. Persamaan yang telah
diperoleh diselesaikan secara berangka dengan menggunakan algorithma
Runge-Kutta-Fehlberg keempat-lima dalam Maple untuk menyelesaikan
sistem persamaan pembezaan. Kesan parameter pada halaju tak berdimensi,
medan magnet teraruh, suhu, pecahan isi padu zarah-zarah nano,
ketumpatan mikroorganisma motil, pekali geseran kulit, nombor
Nusselt dan ketumpatan motil kadar pemindahan mikroorganisma adalah
dipamerkan secara grafik dan dalam bentuk jadual. Didapati bahawa
parameter kawalan mempengaruhi aliran bendalir dan ciri-ciri pemindahan
haba. Kami membandingkan keputusan berangka ini dengan keputusan
yang telah diterbitkan bagi kes terhad dan ia menepati keputusan
sedia ada di dalam kajian lepas.
Kata kunci: Keadaan sempadan fluks jisim sifar; medan teraruh magnet;
mikroorganisma; bendalir nano; perolakan dipaksa; tak mantap
RUJUKAN
Ali,
F.M., Nazar, R., Arifin, N.M. & Pop, I. 2011. MHD mixed convection
boundary layer flow toward a stagnation point on a vertical surface
with induced magnetic field. ASME Journal of Heat Transfer
133(2): 022502.
Aziz,
A., Khan, W.A. & Pop, I. 2012. Free convection boundary layer
flow past a horizontal flat plate embedded in porous medium filled
by nanofluid containing gyrotactic microorganisms. International
Journal of Thermal Sciences 56: 48-57.
Buongiorno,
J. 2006. Convective transport in nanofluids. ASME Journal of
Heat Transfer 128: 240-250.
Choi,
S.U.S. 1995. Enhancing thermal conductivity of fluids with nanoparticles.
In Development and Applications of Non-Newtonian Flows, edited
by Siginer, D.A. & Wang, H.P. ASME MD-vol. 231 and FED-vol.
66. New York: ASME. pp. 99-105.
Davies,
T.V. 1963. The magneto-hydrodynamic boundary layer in the two-dimensional
steady flow past a semi-infinite flat plate. III. The influence
of an adverse magneto- dynamic pressure gradient. proceedings
of the royal society. A Mathematical, Physical and Engineering
Sciences 273(1355): 518-537.
Geng,
P. &Kuznetsov, A.V. 2005. Settling of bidispersed small solid
particles in a dilute suspension containing gyrotactic micro-organisms.
International Journal of Engineering Science 43: 992-1010.
Glauert,
M.B. 1961. A study of the magnetohydrodynamic boundary layer on
a flat plate. Journal of Fluid Mechanics 10: 276-288.
Idowu,
A.S., Dada, M.S., Jimoh, A. & Command, K.S. 2013. Heat and
mass transfer of magnetohydrodynamic( mhd ) and dissipative fluid
flow past a moving vertical porous plate with variable suction.
Mathematical Theory and Modeling 3(3): 80-103.
Ishak, A. 2011. MHD boundary layer flow due to an exponentially stretching
sheet with radiation effect. Sains Malaysiana 40(4): 391-395.
Kuznetsov, A.V., Avramenko, A.A. & Geng, P. 2004. Analytical
investigation of a falling plume caused by bioconvection of oxytactic
bacteria in a fluid saturated porous medium. International
Journal of Engineering Science 42: 557-569.
Kuznetsov, A.V.
& Nield, D.A. 2010. Natural convective boundary-layer flow
of a nanofluid past a vertical plate. International Journal
of Thermal Sciences 49: 243-247.
Kuznetsov, A.V.
2011. Non-oscillatory and oscillatory nanofluid bio-thermal convection
in a horizontal layer of finite depth. European Journal of
Mechanics, B/Fluids 30(2): 156-165.
Kuznetsov, A.V.
& Avramenko, A.A. 2004. Effect of small particles on this
stability of bioconvection in a suspension of gyrotactic microorganisms
in a layer of finite depth. International Communications in
Heat and Mass Transfer 31(1): 1-10.
Kuznetsov, A.V.
& Nield, D.A. 2014. The onset of convection in a horizontal
nanofluid layer of finite depth: A revised model. International
Journal of Heat and Mass Transfer 77: 915-918.
Michael, D.H. 1954.
A two dimensional magnetic boundary layer problem. Mathematika
1: 131-142.
Mutuku, W.N. &
Makinde, O.D. 2014. Hydromagnetic bioconvection of nanofluid over
a permeable vertical plate due to gyrotactic microorganisms.
Computers & Fluids 95: 88-97.
Nield, D.A. &
Bejan A. 2006. Convection in Porous Media. 3rd ed. New
York: Springer.
Saidur, R., Leong,
K.Y. & Mohammad, H.A. 2011. A review on applications and challenges
of nanofluids. Renew Sustain Energy Review 15: 1646-1668.
Sinha, A. &
Misra, J.C. 2014. Effect of induced magnetic field on magneto
hydrodynamic stagnation point flow and heat transfer on a stretching
sheet. Journal of Heat Transfer 136(11): 112701.
Kiwan, S. &
Al-Nimr, M.A. 2010. Investigation into the similarity solution
for boundary layer flows in microsystems. ASME Journal of Heat
Transfer 132(4): 041011.
Takhar, H.S., Kumari,
M. & Nath, G.G. 1993. Unsteady free convection flow under
the influence of a magnetic field. Archive of Applied Mechanics
63(4-5): 313-321.
Takhar, H.S. &
Nath, G. 1997. Similarity solution of unsteady boundary layer
equations with a magnetic field. Meccanica 32: 157-163.
Tham, L., Roslinda,
N. & Pop, I. 2013. Mixed convection flow over a solid sphere
embedded in a porous medium filled by a nanofluid containing gyrotactic
microorganisms. International Journal of Heat and Mass Transfer
62: 647-660.
Uddin, M.J., Pop,
I. & Ismail, A.I.M. 2012. Free convection boundary layer flow
of a nanofluid from a convectively heated vertical plate with
linear momentum slip boundary condition. Sains Malaysiana 41(11):
1475-1482.
Xu, H. & Pop,
I. 2014. Fully developed mixed convection flow in a horizontal
channel filled by a nanofluid containing both nanoparticles and
gyrotactic microorganisms. European Journal of Mechanics -
B/Fluids 46: 37-45.
Yusoff, N.H.M.,
Uddin, M.J. & Ismail, A.I.M. 2014. Combined similarity-numerical
solutions of MHD boundary layer slip flow of non-newtonian power-law
nanofluids over a radiating moving plate. Sains Malaysiana
43(1): 151-159.
Wong, K.V. &
Leon, O.D. 2010. Applications of nanofluids: Current and future.
Advances in Mechanical Engineering 2: 519659.
Zaimi, K., Ishak,
A. & Pop, I. 2014. Stagnation-point flow toward a stretching/shrinking
sheet in a nanofluid containing both nanoparticles and gyrotactic
microorganisms. ASME Journal of Heat Transfer 136(4): 041705.
*Pengarang untuk surat-menyurat; emails:
faisalbasir91@gmail.com