Sains Malaysiana 46(6)(2017): 981–988
http://dx.doi.org/10.17576/jsm-2017-4606-18
Protection of Apricot Biodiesel from Thermal
Degradation by using Natural Antioxidants of Fagopyrum tataricum(L.) Gaertn.
(Perlindungan Biodiesel Aprikot daripada Degradasi Termal menggunakan Antioksida Semula Jadi daripada Fagopyrum tataricum (L.) Gaertn.
FAIZAN
ULLAH1,
ARSHAD
HUSSAIN
WAZIR2*,
ADNAN
KHATTAK1,
SHAHAN
ZEB
KHAN2
& ISHTIAQ HUSSAIN3
1Department
of Botany, University of Science and Technology Bannu,
Khyber Pukhtunkhwa, Pakistan
2Department
of Chemistry, University of Science and Technology Bannu,
Khyber Pukhtunkhwa, Pakistan
3Department
of Agriculture Gilgit-Baltistan, Pakistan
Diserahkan: 26
Mac 2016/Diterima: 19 Disember 2016
ABSTRACT
The present study
aims to improve the oxidation stability of wild apricot kernel oil biodiesel (WAKOB)
by using natural antioxidants of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Biodiesel was synthesized at different catalyst (NaOH) concentrations, reaction temperatures, reaction time
intervals and methanol-to-oil molar ratios. Thermal oxidative stability
measurements were carried out according to EN14112
using a Rancimet instrument. Our results showed a
high yield of biodiesel (97±1.092) at 65oC
in the presence of 1% NaOH (%w/w oil) and
methanol/oil molar ratio of 9:1 and for the time duration of 60 min. Proton
nuclear magnetic resonance (1H NMR) confirmed the conversion
percentage of kernel oil into biodiesel, which was further evidenced by Fourier
transform infrared spectroscopy (FT-IR) and refractometer
analyses. Methanolic fraction of Tartary buckwheat
leaves (MTBWLF) was standardized to contain the highest amount of phenolics (209 mg gallic acid/100 g). In this study, the mixture of synthetic antioxidant butylated
hydroxyl toluene (BHT) (0.25%) and methanolic extract of Tartary buckwheat leaves (0.5%) ensured high oxidation stability of
biodiesel samples, leading to stabilizing factor of 4.86.
Keywords: Biodiesel; FT-IR spectroscopy; 1HNM spectroscopy; natural
antioxidant
ABSTRAK
Kajian ini bertujuan untuk memperbaiki kestabilan pengoksidaan minyak kernel aprikot liar
biodiesel (WAKOB) dengan menggunakan antioksidan semula jadi daripada gandum buck Tartary (Fagopyrum tataricum (L.) Gaertn). Biodiesel telah disintesis pada kepekatan pemangkin berbeza (NaOH), tindak balas suhu, tindak balas reaksi selang masa dan nisbah molar metanol kepada minyak. Pengukuran kestabilan termal oksidatif telah dijalankan mengikut EN14112 dengan menggunakan instrumen Rancimet. Keputusan kami menunjukkan hasil biodiesel yang tinggi (97±1.092) pada 65oC kehadiran 1% NaOH (%w/w minyak) dan metanol/ nisbah molar minyak 9:1 dan untuk tempoh masa 60 min. Nuklear proton resonans magnetik (1H NMR) mengesahkan peratusan penukaran minyak isirong kepada biodiesel, dan dibuktikan seterusnya oleh spektroskopi transformasi Fourier Inframerah (FT-IR) dan analisis refraktometer. Pecahan metanolik daun gandum buck Tartary (MTBWLF) telah dipiawaikan untuk mengandungi jumlah tertinggi fenolik (209 mg asid galik/100 g). Dalam kajian ini, campuran sintetik antioksidan butilated toluen hidroksil (BHT)
(0.25%) dan ekstrak metanolik daun gandum buck Tartary (0.5%) memastikan kestabilan pengoksidaan sampel biodiesel yang tinggi yang membawa kepada penstabilan faktor 4.86.
Kata kunci: Antioksidan semula jadi; biodiesel; spektroskopi FT-IR; spektroskopi 1HNM
RUJUKAN
Adom, K.K. & Liu, R.H. 2002. Antioxidant activity of grains. J.
Agric. Food Chem. 50: 6182- 6187.
Ahmad, M., Khan, M.A., Zafar, M. & Sultana, S. 2010. Environment friendly renewable energy from sesame biodiesel. Energy Source Part A32: 189-196.
Alamu, O.J., Waheed, M.A., Jekayinfa, S.O. & Akintola,
T.A. 2007. Optimal
transesterification duration for biodiesel production from Nigerian palm kernel
oil. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 07 018 IX: 1-11.
Anonymous. 2010. Agriculture
statistics survey report. Department of Agriculture Gilgit-Baltistan
Pakistan. pp 23-48.
Buyukkaya, E., Benli, S., Karaaslan,
S. & Guru, M. 2013. Effects
of trout-oil methyl ester on a diesel engine performance and emission
characteristics. Energy Conversion and Management 69: 41-48.
Carelli, A.A., Franco, I.C. & Crapiste,
G.H. 2005. Effectiveness of
added natural antioxidants in sunflower oil. Grasas y Aceites4: 303-310.
Chaithongdee, D., Chutmanop,
J. & Srinophakun, P. 2010. Effect
of antioxidant and additives on the oxidation stability of Jatropha biodiesel. Kasetsart J. (Nat. Sci.) 44: 243-250.
Deshpande, P. & Kulkarni, K. 2012. Production and evaluation of biodiesel from palm oil and ghee
(clarified butter). Chem. Process Eng. Res. 2: 33-42.
Desouza, A.C., Galão, O.F. & Guedes, C.L.B. 2013. Biodiesel from used frying oil and 286 conservation using natural
antioxidants. Europ. Int. J. Sci. Technol. 2: 1-9.
Diwani, E.I., Rafie,
G.E. & Hawash, S. 2009. Protection of biodiesel and oil
from degradation by natural antioxidants of Egyptian Jatropha. Int.
J. Environ. Sci. Technol. 6: 369-378.
Domingos, A.K., Saad, E.B., Vechiatto,
W.D., Wilhelm, H.M. & Ramos, L.P. 2007. The influence of BHA, BHT and TBHQ on the oxidation stability of
soybean oil ethyl ester (Biodiesel). J. Braz. Chem. Soc. 18:
416-423.
Domínguez, L.A.A. 1996. Biofuels: Use
of vegetable oils as renewable energy. Madrid: Ministry of Agriculture,
Fisheries and Food. pp. ISBN 84-491-0181-6.
European Committee for Standardization: EN14214 2003: Automotive
fuels-fatty acid methyl esters (FAME) for diesel engines- requirements and test
methods. European Committee for Standardization, Brussels
(Belgium).
Eevera, T., Rajendran,
K. & Saradha, S. 2009. Biodiesel
production process optimization and characterization to assess the suitability
of the product for varied environmental conditions. Renew Energy 34:
762-765.
Gregory, L. 2014. Improved Oxidative Stability
in Biodiesel via Commercially-Viable Processing Strategies. All Theses. Paper 1918.
Guo, X.D., Ma, Y.J., Parry, J., Gao, J.M., Yu, L.L. & Wang, M. 2011. Phenolics content
and antioxidant activity of tartary buckwheat from
different locations. Molecule 16: 9850- 9867.
Gelbard, G.O., Bres, R.M., Vargas, F., Vielfaure & Schuchardt, U.F.
1995. 1H nuclear magnetic resonance
determination of the yield of the transesterification of rape seed oil with
methanol. J. Amer. Oil Chem. Soc. 72: 1239-1241.
Galvan, D., Orives, J.R., Coppo, R.L., Silva, E.T., Angilelli,
K.G. & Borsato, D. 2013. Determination of the kinetics and thermodynamics parameters of
biodiesel oxidation reaction obtained from an optimized mixture of vegetable
oil and animal fat. Energy Fuels 27: 6866-6871.
Ling, Y.C., May, C.Y., Foon, C.S., Ngan,
M.A., Hock, C.C. & Basiron, Y.
2006. The effect of natural and synthetic antioxidants on the
oxidation stability of palm diesel. Fuel 85: 867-870.
Lapornik, B., Prošek, M. & Golc, W.A. 2005. Comparison of extracts prepared from plant by products using different solvents
and extraction time. J. Food Eng. 71: 214- 222.
Mofijur, M., Masjuki, H.H., Kalam,
M.A., Hazrat, M.A., Liaquat,
A.M., Shahabuddin, M. & Varman, M. 2012. Prospects of biodiesel from Jatropha in
Malaysia. Renew. Sustain Energy Rev. 16: 5007-5020.
Mann, A. 2010. Phytochemical studies and evaluation of in vitro anti mycobacterial activity of bioactive constituents of the
root bark extract of Terminalia avicennioidesGuill. & Perr. Ph.D. Dissertation Ahmadu Bello University, Zaria,
Nigeria (Unpublished).
Mathiyazhagan, M. & Ganapathi, A. 2011. Factors affecting biodiesel production. Res. Plant Biol. 1: 1-5.
Moretto,
E. & Fett, R. 1998. Tecnologia de Óleos e Gorduras Vegetais na Indústria de Alimentos, Varela: São Paulo.
Naczk,
M. & Shahidi, F. 2006. Phenolics in cereals, fruits and vegetables: Occurrence,
extraction and analysis. J. Pharm. Biomed. Anal.41:
1523-1542.
Nzesh. 2015. Protection of canola biodiesel from thermal degradation by using
synthetic antioxidant Butylated hydroxyanisole. MSc
Thesis. Department of Botany University of Science and Technology Bannu KP Pakistan (Unpublished).
Rizwanul,
F.I.M., Masjuki, H.H., Kalam,
M.A., Mofijur, M. & Abedin, M.J. 2014. Effect of antioxidant on the performance and emission characteristics of a
diesel engine fueled with palm biodiesel blends. Energy Conversion and
Management 79: 265-272.
System
Lab Services 1997. Diesel fuel pump evaluation and analysis. Final Report to the National
Biodiesel Board. SLS.
Schober,
S. & Mittelbach, M. 2004. The impact of antioxidants on biodiesel oxidation stability. Eur. J. Lipid Sci. Technol. 106: 382-389.
Sarin,
R.M., Sharma, S., Sinharay, R.K. & Malhotra.
2007. Jatropha-palm biodiesel blends: An optimum mix for Asia. Fuel 86:
1365-1371.
Storch,
T., Cruz, J., Gettens, C., Oliveira, T., Silva, M.
& Zambiazi, R. 2008. Resumo da XVII Congresso de Iniciação Científica e X Encontro de Pós-Graduação, Pelotas, Brasil.
Ullah, F., Bano, A. & Ali, S. 2013. Optimization
of protocol for biodiesel production of linseed (Linum usitatissimumL.) oil. Pol. J. Chem.
Technol. 15: 74-77.
Ullah,
F., Nosheen, A., Hussain, I. & Banon, A. 2009. Base catalyzed
transesterification of wild apricot kernel oil for biodiesel production. Afr.
J. Biotechnol. 14: 3289-3293.
Wazir,
K. 2015. Thermal stability investigation of biodiesel produced from seed oil of Eruca sativa. M.Sc Thesis Department of Botany
University of Science and Technology Bannu KP
Pakistan.
*Pengarang untuk surat-menyurat;
email: arshadwaziri@gmail.com
|