Sains Malaysiana 46(9)(2017): 1385–1392
http://dx.doi.org/10.17576/jsm-2017-4609-05
Formation
and Sustainability of H-mode Regime in Tokamak Plasma via
Source Perturbations Based on Two-Field Bifurcation Concept
(Pembentukan dan Kelestarian Rejim H-mod
pada Plasma Tokamak melalui Pengusikan
Sumber Berdasarkan Konsep Dua-Bidang Dwicabang)
B. CHATTHONG1*
& T. ONJUN2
1Department of Physics, Faculty of
Science, Prince of Songkla University, Hat Yai,
Songkla,
90110, Thailand
2School of Manufacturing Systems
and Mechanical Engineering, Sirindhorn International Institute of
Technology, Thammasat University, Pathum Thani, Thailand
Diserahkan:
31 Ogos 2016/Diterima: 10 November 2016
ABSTRACT
A set
of coupled particle and thermal transport equations is used to study
a formation and sustainability of an edge transport barrier (ETB)
in tokamak plasmas based on two-field bifurcation. The two transport
equations are numerically solved for spatio-temporal profiles of
plasma pressure and density. The plasma core transport includes
both neoclassical and turbulent effects, where the latter can be
suppressed by flow shear mechanism. The flow shear, approximated
from the force balance equation, is proportional to the product
of pressure and density gradients, resulting in non-linearity behaviors
in this calculation. The main thermal and particle sources are assumed
to be localized near plasma center and edge, respectively. It is
found that the fluxes versus gradients regime illustrates bifurcation
nature of the plasma. This picture of the plasma implies hysteresis
properties in fluxes versus gradients space. Hence, near marginal
point, the perturbation in thermal or particle sources can trigger
an L-H transition. Due to hysteresis, the triggered H-mode can be
sustained and the central plasma pressure and density can be enhanced.
Keywords:
ETB;
fusion; L-H transition; plasma; tokamak
ABSTRAK
Satu
set gandingan zarah dan persamaan angkutan terma digunakan untuk
mengkaji pembentukan dan kelestarian halangan angkutan pinggiran
(ETB)
dalam plasma tokamak berdasarkan dua medan dwicabang. Dua persamaan
angkutan diselesaikan secara berangka untuk profil ruang-masa tekanan
plasma dan ketumpatan. Teras plasma mengangkut kedua-dua kesan neoklasik
dan turbulens, dengan turbulens boleh disekat melalui mekanisme
aliran ricih. Aliran ricih, penghampiran daripada persamaan keseimbangan
daya, adalah berkadaran dengan produk tekanan dan kecerunan ketumpatan
yang mengakibatkan tingkah-laku yang tak linear dalam pengiraan
ini. Sumber utama terma dan zarah masing-masing adalah diandaikan
setempat berhampiran pusat plasma dan pinggiran. Didapati bahawa
rejim kecerunan menggambarkan dwicabang semula jadi plasma. Gambaran
plasma ini membayangkan sifat histeresis dalam fluks berbanding
ruang kecerunan. Oleh yang demikian, berhampiran titik marginal,
pengusikan di dalam sumber terma atau zarah boleh mencetuskan peralihan
L-H. Oleh sebab histeresis, pencetus H-mod dapat dikekalkan dan
ketumpatan tekanan tengah plasma boleh dipertingkatkan.
Kata kunci: ETB;
lakuran; plasma; peralihan L-H; tokamak
RUJUKAN
Aymar,
R., Barabaschi, P. & Shimomura, Y. 2002. The ITER design. Plasma Physics and Controlled Fusion 44:
519.
Carreras,
B.A., Diamond, P.H., Liangs, Y.M., Lebedev, V. & Newman, D.
1994. Dynamics of L to H bifurcation. Plasma
Physics and Controlled Fusion 36: A93.
Chatthong,
B. & Onjun, T. 2016. Understanding roles of E×B flow and magnetic
shear on the formation of internal and edge transport barriers using
two-field bifurcation concept. Nuclear Fusion 56: 016010.
Chatthong,
B. & Onjun, T. 2015. Locality effects on bifurcation paradigm
of L-H transition in tokamak plasmas. Songklanakarin
Journal of Science and Technology 37: 719-725.
Diamond,
P.H., Lebedev, V.B., Newman, D.E. & Carreras, B.A. 1995. Dynamics
of spatiotemporally propagating transport barriers. Physics of Plasmas (1994-present) 2: 3685-3695.
Dimits,
A.M., Bateman, G., Beer, M.A., Cohen, B.I., Dorland, W., Hammett,
G.W., Kim, C., Kinsey, J.E., Kotschenreuther, M., Kritz, A.H., Lao,
L.L., Mandrekas, J., Nevins, W.M., Parker, S.E., Redd, A.J., Shumaker,
D.E., Sydora, R. & Weiland, J. 2000. Comparisons and physics
basis of tokamak transport models and turbulence simulations. Physics
of Plasmas 7: 969-983.
Garbet,
X., Mantica, P., Ryter, F., Cordey, G., Imbeaux, F., Sozzi, C.,
Manini, A., Asp, E., Parail, V., Wolf, R. & the JET EFDA Contributors.
2004. Profile stiffness and global confinement. Plasma
Physics and Controlled Fusion 46: 1351.
Hinton,
F.L. 1991. Thermal confinement bifurcation and the L- to H-mode
transition in tokamaks. Physics
of Fluids B: Plasma Physics 3: 696-704.
Hinton,
F.L. & Staebler, G.M. 1993. Particle and energy confinement
bifurcation in tokamaks. Physics
of Fluids B: Plasma Physics 5: 1281-1288.
Hubbard,
A.E. 2000. Physics and scaling of the H-mode pedestal. Plasma Physics and Controlled Fusion 42(Supplement 5A).
Iguchi,
H., Ida, K., Yamada, H., Itoh, K., Itoh, S.I., Matsuoka, K., Okamura,
S., Sanuki, H., Yamada, I., Takenaga, H., Uchino, K. & Muraoka,
K. 1994. The effect of magnetic field configuration on particle
pinch velocity in compact helical system (CHS). Plasma
Physics and Controlled Fusions 36(7): 1091.
Itoh,
K. 1994. Theoretical progress on H-mode physics. Plasma Physics and Controlled Fusion 36: A307.
Itoh,
K., Itoh, S.I. & Fukuyama, A. 1999. Transport
and Structural Formation in Plasmas. Bristol: IOP Publishing.
Itoh,
S.I. & Itoh, K. 1988. Model of L to H-mode transition in tokamak.
Physical Review Letters 60: 2276.
Jhang,
H., Kim, S.S. & Diamond, P.H. 2012. Role of external torque
in the formation of ion thermal internal transport barriers. Physics of Plasmas 19: 042302.
Lebedev,
V. B. & Diamond, P.H. 1997. Theory of the spatiotemporal dynamics
of transport bifurcations. Physics
of Plasmas 4: 1087-1096.
Malkov,
M.A. & Diamond, P.H. 2009. Weak hysteresis in a simplified model
of the L-H transition. Physics
of Plasmas (1994-present) 16: 012504.
Malkov,
M.A. & Diamond, P.H. 2008. Analytic theory of L --> H transition,
barrier structure, and hysteresis for a simple model of coupled
particle and heat fluxes. Physics
of Plasmas 15: 122301.
Pankin,
A.Y., Bateman, G., Brennan, D.P., Schnack, D.D., Snyder, P.B., Voitsekhovitch,
I., Kritz, A.H., Kruger, S., Janeschitz, G., Onjun, T., Pacher,
G.W. & Pacher, H.D. 2005. ELM
riggering conditions for the integrated modeling of H-mode plasmas.
Czechoslovak Journal of Physics
55: 367-380.
Ryter,
F., Suttrop, W., Brüsehaber, B., Kaufmann, M., Mertens, V., Murmann,
H., Peeters, A.G., Stober, J., Schweinzer, J., Zohmdag H. &
ASDEX Upgrade Team. 1998. H-mode power threshold and transition
in ASDEX Upgrade. Plasma Physics and Controlled Fusion 40:
725.
Shaing,
K.C. & Crume, E.C. 1989. Bifurcation theory of poloidal rotation
in tokamaks: A model for L-H transition. Physical
Review Letters 63: 2369.
Snipes,
J.A. & the International H-mode Threshold Database Working Group.
2000. Latest results on the H-mode threshold using the international
H-mode threshold database. Plasma
Physics and Controlled Fusion 42: A299.
Thomas,
D. M., Groebner, R. J., Burrell, K. H., Osborne, T.H. & Carlstrom,
T.N. 1998. The back transition and hysteresis effects in DIII-D.
Plasma Physics and Controlled Fusion 40:
707.
Toda,
S., Itoh, S.I., Yagi, M., Fukuyama, A. & Itoh, K. 1996. Double
hysteresis in L/H transition and compound dithers. Plasma
Physics and Controlled Fusion 38: 1337.
Wagner,
F. 2007. A quarter-century of H-mode studies. Plasma Physics and Controlled Fusion 49: B1.
Wesson,
J. 2004. Tokamaks. New
York: Clarendon Press.
*Pengarang untuk
surat-menyurat; email: boonyarit.ch@psu.ac.th
|