Sains Malaysiana 46(9)(2017): 1505–1512
http://dx.doi.org/10.17576/jsm-2017-4609-20
Effects of Fermentation Time and pH on Soursop (Annona
muricata) Vinegar Production towards its Chemical Compositions
(Kesan Masa Fermentasi dan pH terhadap Penghasilan Cuka Durian
Belanda (Annona muricata) dan Komposisi Kimianya)
CHIN
WAI
HO1,
AZWAN
MAT
LAZIM1,
SHAZRUL
FAZRY2,
UMI
KALSUM
HJ
HUSSAIN
ZAKI3
& SENG JOE LIM1*
1School
of Chemical Sciences and Food Technology, Faculty of Science and
Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School
of Biosciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Food
Science and Food Safety, Food Technology Research Centre, Malaysian
Agricultural Research and Development Institute (MARDI),
43400 Serdang, Selangor Darul Ehsan
Malaysia
Diserahkan:
31 Ogos 2016/Diterima: 28 April 2017
ABSTRACT
Vinegar is a liquid
product that undergoes both alcoholic and acetous fermentation of
sugar (carbohydrate) sources. Soursop (Annona muricata)
is easily available in Malaysia throughout the year. However, it
is also highly perishable and has a short shelf-life. Therefore,
in this research, soursop was used in the production of vinegar,
to increase its utilisation and reduce wastage. The objectives of
this research were to determine the effects of fermentation time
and pH on soursop vinegar using a 3 × 5 factorial design and to
determine its chemical compositions. It was found that pH and fermentation
time showed significant (p<0.05) effects on the reduction
of sugar content and the production of acetic acid, while only fermentation
time showed a significant effect on the production of ethanol. The
interaction between factors did not exhibit any statistical significance
(p>0.05). It was evident that the sugar concentration
reduces over time and it was inversely proportional to the ethanol
and acetic acid concentrations, due to the conversion of sugar to
ethanol and subsequently acetic acid. It was found that higher pH
(pH5.5) gave significantly (p<0.05) higher acetic acid
production in the vinegar, while pH has no significant (p>0.05)
effect on ethanol production. There were no significant differences
(p>0.05) in vitamin C content in all vinegar samples.
Thus, it can be established that at fermentation time of 120 h and
pH5.5, more sugar was used and more ethanol and acetic acid were
produced.
Keywords: Acetous fermentation;
alcoholic fermentation; soursop; vinegar; yeast
ABSTRAK
Cuka merupakan produk
cecair yang telah melalui proses fermentasi alkohol dan aselom pada
sumber gula (karbohidrat). Durian belanda (Annona muricata) merupakan buah-buahan
yang amat popular dan senang diperoleh di Malaysia sepanjang tahun.
Walau bagaimanapun, durian belanda merupakan buah-buahan yang sangat
mudah rosak dan mempunyai jangka hayat yang pendek. Oleh itu, dalam
kajian ini, durian belanda telah digunakan untuk menghasilkan cuka
untuk mengurangkan pembaziran serta meningkatkan penggunaannya.
Objektif kajian ini adalah untuk mengenal pasti kesan masa fermentasi
dan pH terhadap penghasilan cuka durian belanda dengan menggunakan
reka bentuk eksperimen berfaktor 3 × 5 dan mengenal pasti komposisi
kimianya. Hasil daripada kajian ini menunjukkan bahawa masa fermentasi
dan pH memberi kesan yang bererti (p<0.05) ke atas kandungan
gula dan penghasilan asid asetik, manakala hanya masa fermentasi
memberi kesan yang bererti (p<0.05) ke atas penghasilan etanol.
Interaksi antara faktor tidak menunjukkan kesan yang bererti (p>0.05).
Dapat diperhatikan bahawa kepekatan gula menurun dengan peningkatan
masa fermentasi dan ia adalah berkadar songsang dengan kepekatan
etanol dan asid asetik. Ini disebabkan oleh penukaran gula kepada
etanol dan kemudiannya asid asetik. Didapati juga pada pH yang lebih
tinggi (pH5.5), penghasilan asid asetik adalah lebih tinggi secara
bererti (p<0.05), tetapi nilai pH tidak memberi kesan bererti
(p>0.05) pada penghasilan etanol. Kandungan vitamin C tidak menunjukkan
perbezaan bererti (p<0.05) dalam semua sampel. Secara keseluruhannya,
pada masa fermentasi 120 jam dan pH5.5, didapati gula paling banyak
digunakan manakala etanol dan asid asetik paling banyak dihasilkan.
Kata
kunci: Cuka; durian belanda; fermentasi alkohol; fermentasi asetous;
yis.
RUJUKAN
Adetuyi,
F.O. & Ibrahim, T.A. 2014. Effect of fermentation time on the
phenolic, flavonoid and vitamin C contents and antioxidant activities
of okra (Abelmoschus esculentus) seeds. Nigerian Food
Journal 32(2): 128-137.
Ammar,
A.A., Asmeret, A.B. & Teamrat, A.G. 2013. A new method for rapid
determination of carbohydrate and total carbon concentrations using
UV spectrophotometry. Carbohydrate Polymers 97: 253-261.
Bazirake,
G.W.B., Byarugaba, W., Tumusiime, M. & Kimono, D.A. 2014. The
technology of producing banana wine vinegar from starch of banana
peels. African Journal of Food Science and Technology 5(1):
1-5.
Betiku,
E. & Taiwo, A.E. 2015. Modeling and optimization of bioethanol
production from breadfruit starch hydrolyzate vis-à-vis response
surface methodology and artificial neural network. Renewable
energy 74: 87-94.
Budak,
N.H., Aykin, E., Seydim, A.C., Greene, A.K. & Seydim, Z.B.G.
2014. Functional properties of vinegar. Journal of Food Science
79(5): 757-764.
Buyuksirit,
T. & Kuleasan, H. 2014. Antimicrobial agents produced by yeasts.
International Journal of Biological, Biomolecular, Agricultural,
Food and Biotechnological Engineering 8(10): 1096-1099.
Cairns,
A.M., Watson, M., Creanor, S.L. & Foye, R.H. 2002. The pH and
titratable acidity of a range of diluting drinks and their potential
effect on dental erosion. Journal of Dentistry 30: 313-317.
Cameron,
A.C. & Windmeijer, F.A.G. 1996. R-Squared measures for count
data regression models with applications to health-care utilization.
Journal of Business & Economic Statistics 14(2): 209-220.
Chen,
Q., Liu, A., Zhao, J., Qin, O., Sun, Z. & Lin, H. 2013. Monitoring
vinegar acetic fermentation using a colorimetric sensor array. Sensors
and Actuators B 183: 608-616.
Dabija,
A. & Hatnean, C.A. 2014. Study concerning the quality of apple
vinegar obtained through classical method. Journal of Agroalimentary
Processes and Technologies 20(4): 304-310.
Dung,
N.T.P., Tuong, N.H. & Phong, H.X. 2014. Study on ethanol fermentation
conditions from molasses by thermo-tolerant yeasts. International
Journal of Business and Applied Science 1: 13-22.
Food
Act and Regulation. 1985. Standards and Particular Labeling Requirements
for Food: Vinegar Sauce, Chutney and Pickle. Putrajaya: Safety
and Food Quality Section.
Fushimi,
T., Tayama, K., Fukaya, M., Kotakoshi, K., Nakai, N. & Tsukamoto,
Y. 2001. Acetic acid feeding enhances glycogen repletion in liver
and skeletal muscle of rats. Journal of Nutrition 131: 1973-1977.
Heinzl,
H. & Mittlbock, M. 2003. Pseudo R-squared measures for poisson
regression models with over- or uderdispersion. Computational
Statistics & Data Analysis 44(1): 253-271.
Hernandez,
Y., Lobo, M.G. & Gonzalez, M. 2006. Determination of vitamin
C tropical fruits: A comparative evaluation of methods. Journal
of Food Chemistry 96: 654-664.
Iersel,
M.F.M., Dieren, B., Rombouts, F.M. & Abee, T. 1999. Flavour
formation and cell physiology during the production of alcohol-free
beer with immobilized Saccharomyces cerevisiae. Enzyme
and Microbial Technology 24(7): 407- 411.
Iersel,
M.F.M., Brouwer-Post, E., Rombouts, F.M. & Abee, T. 2000. Influence
of yeast immobilization on fermentation and aldehyde reduction during
the production of alcohol-free beer. Enzyme and Microbial Technology
26(8): 602-607.
Maris,
A.J.A., Abbott, D.A., Bellissimi, E., Brink, J., Kuyper, M., Luttik,
M.A.H., Wisselink, H.W., Scheffers, W.A., Dijken, J.P. & Pronk,
J.T. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates
by Saccharomyces cerevisiae: Current status. Antonie Van
Leeuwenhoek 90: 391-418.
Narendranath, N.V. &
Power, R. 2005. Relationship between pH and medium dissolved solids
in terms of growth and metabolism of Lactobacilli and Saccharomyces
cerevisiae during ethanol production. Applied Environmental
Microbiology 71(5): 2239-2243.
Okamura,
T., Ogata, T., Minamimoto, N., Takeno, T., Noda, H., Fukuda, S.
& Ohsugi, M. 2001. Characteristics of wine produced by mushroom
fermentation. Bioscience, Biotechnology, and Biochemistry 65(7):
1596-1600.
Okigbo,
R.N. & Obire, O. 2009. Mycoflora and production of wine from
fruits of soursop (Annona Muricata L.). International
Journal of Wine Research 1: 1-9.
Pooja,
S. & Soumitra, B. 2013. Optimization of process parameters for
vinegar production using banana fermentation. International Journal
of Research in Engineering and Technology 2(9): 501-514.
Quek,
M.C., Chin, N.L. & Yusof, Y.A. 2013. Modelling of rheological
behavior of soursop juice concentrates using shear rate-temperature-concentration
superposition. Journal of Food Engineering 118: 380-386.
Qui,
J., Ren, C., Fan, J. & Li, Z. 2010. Antioxidant activities of
aged oat vinegar in vitro and in mouse serum and liver. Journal
of the Science and Food Agriculture 90(11): 1951- 1958.
Rajko,
V. & Janez, H. 1999. Synthesis of higher alcohols during cider
processing. Food Chemistry 67: 287-294.
Raspor,
P. & Goranovic, D. 2008. Biotechnological applications of acetic
acid bacteria. Critical Reviews
in Biotechnology 28: 101-124.
Tesfaye,
W., Morales, M.L., Garcia-Parrilla, M.C. & Troncoso, A.M. 2002.
Wine vinegar: Technology, authenticity and quality evaluation. Trends in Food Science and Technology 13: 12-21.
Ubeda,
C., Hidalgo, C., Torija, M.J., Mas, A., Troncoso, A.M. & Morales,
M.L. 2011. Evaluation of antioxidant activity and total phenols
index in persimmon vinegars produced by different processes. LWT
- Food Science and Technology 44: 1591-1596.
Umme,
A., Asbi, B.A., Salmah, Y., Junainah, A.H. & Jamilah, B. 1996.
Characteristics of soursop natural puree and determination of optimum
conditions for pasteurization. Food
Chemistry 58(1): 119-124.
*Pengarang untuk surat-menyurat;
email: joe@ukm.edu.my
|