Sains Malaysiana 46(9)(2017): 1541–1548
http://dx.doi.org/10.17576/jsm-2017-4609-24
Kinetics of Surfactin Production
by Bacillus subtilis in a 5 L Stirred-tank Bioreactor
(Kinetik Penghasilan Surfaktin
oleh Bacillus subtilis dalam
Tangki Pengacau Bioreaktor 5 L)
MUHAMMAD
QADRI
EFFENDY
MUBARAK1,
SITI
HAJAR
MOHAMAD
JUFRI1,
SHIKH
MOHD
SHAHRUL
NIZAN
SHIKH
ZAHAR1,
MOHD
SAHAID
KALIL2,
AIDIL
ABDUL
HAMID3
& MOHD HAFEZ MOHD
ISA4*
1Faculty of
Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru
Nilai
71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia
2Faculty of
Engineering and Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
4Faculty of
Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru
Nilai
71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia
Diserahkan: 7 Jun 2016/Diterima: 9 Mac 2017
ABSTRACT
A kinetic model of bacterial
growth and metabolite production can adequately explain the trends
and interaction of important parameters in a fermentation process.
Production of surfactin by two bacterial
strains, namely, Bacillus subtilis MSH1 and Bacillus subtilis ATCC
21322, in a 5 L bioreactor was investigated using
Cooper’s media with 4% (v/v) glucose. The present kinetic study
was carried out in order to determine the correlation between
microbial cell growth, surfactin production
and glucose consumption. Batch fermentation was performed by cultivation
of each selected strain in a bioreactor at 30°C for 55
h. The experimental results showed production of surfactin
in the culture medium after 5 and 10 h of incubation for B.
subtilis ATCC
21332 and B. subtilis MSH1,
respectively, at which the bacterial cells were at an early stage
of the log phase. The maximum concentration of surfactin
(Pmax) achieved by B. subtilis MSH1
and B. subtilis ATCC 21332 was 226.17 and 447.26 mg/L,
respectively. The kinetic study of bacterial cell growth of both
strains indicated that B. subtilis MSH1 had a specific growth
rate (μmax) of 0.224 h-1
and attained a maximum biomass concentration (Xmax)
as high as 2.90 g/L after 28 h of fermentation, while B. subtilis
ATCC
21332, with μmax of
0.087 h-1, attained an Xmax of
2.62 g/L after 45 h of incubation. B. subtilis MSH1
showed higher growth kinetics, thus exhibited
higher values of μmax and
Xmax compared with B. subtilis
ATCC
21332 under identical fermentation conditions.
The Pmax achieved by B. subtilis ATCC
21332 was 447.26 mg/L, two times higher than
that achieved by B. subtilis MSH1 (226.17 mg/L). The results obtained provide kinetics
information including values of Pmax,
μmax and
Xmax for better understanding of interactions
of bacterial cell growth and glucose consumption towards surfactin production by a commercial strain of B. subtilis
ATCC 21332 and a local isolate of B. subtilis MSH1.
Keywords: Bacillus subtilis ATCC 21322; Bacillus subtilis
MSH1; Cooper’s media; kinetic study; surfactin production
ABSTRAK
Model kinetik pertumbuhan bakteria dan penghasilan
metabolit boleh
menjelaskan aliran dan interaksi parameter yang penting untuk proses penapaian. Penghasilan surfaktin oleh
dua jenis
bakteria, Bacillus subtilis
MSH1 dan Bacillus subtilis ATCC 21332;
di dalam bioreaktor
5 L telah dikaji menggunakan
media Cooper dengan 4% (v/v) glukosa.
Kajian
kinetik ini dijalankan
bagi menentukan
korelasi antara pertumbuhan sel mikrob, penghasilan surfaktin dan penggunaan
glukosa. Penapaian bakteria telah
dilakukan melalui
pengkulturan kedua-dua jenis bakteria di dalam bioreaktor pada 30°C selama 55 jam. Keputusan
uji kaji menunjukkan
penghasilan surfaktin
di dalam kultur media B. subtilis ATCC 21332 dan
B. subtilis MSH1, masing-masing
selepas tempoh
pengeraman selama 5 dan 10 jam dengan sel bakteria pada
tempoh berkenaan
berada pada peringkat
awal fasa
log. Kepekatan maksimum surfaktin (Pmax)
dicapai oleh
B. subtilis MSH1
dan B. subtilis ATCC 21332
masing-masing pada
226.17 dan 447.26 mg/L. Kajian kinetik pertumbuhan sel bakteria bagi
kedua-dua jenis
bakteria menunjukkan bahawa B. subtilis MSH1
memiliki kadar
pertumbuhan spesifik (μmax) pada
0.224 h-1 dan mencapai
kepekatan maksimum
biojisim (Xmax)
setinggi 2.90 g/L selepas
28 jam tempoh penapaian,
manakala B. subtilis ATCC 21332
dengan μmax pada 0.087 h-1, mencapai
Xmax pada 2.62 g/L selepas 45 jam tempoh pengeraman. B. subtilis
MSH1 menunjukkan kinetik pertumbuhan yang lebih tinggi turut
menyebabkan nilai
μmax dan Xmax menjadi lebih tinggi
berbanding B. subtilis ATCC pada kaedah penapaian yang sama.
Nilai
Pmax yang dicapai
oleh B.
subtilis ATCC
21332 adalah 447.26 mg/L,
dua kali ganda
lebih tinggi daripada yang dicapai oleh B. subtilis MSH1
(226.17 mg/L). Keputusan yang
diperoleh telah menyediakan maklumat kinetik penting termasuk nilai Pmax, μmax dan Xmax untuk menyumbang pemahaman mengenai interaksi pertumbuhan sel bakteria dan
penggunaan glukosa
terhadap pengeluaran surfaktin oleh bakteria komersil B. subtilis
ATCC
21332 dan pencilan
tempatan B. subtilis MSH1.
Kata kunci: Bacillus subtilis ATCC 21332;
Bacillus subtilis MSH1; kajian kinetik; media Cooper; penghasilan surfaktin
RUJUKAN
Al-Araji, L., Raja Abd. Rahman, R.N.Z., Basri, M. & Salleh, A.B.
2007. Microbial surfactant. Asia Pac. J. Mol. Biol. Biotechnol.
15(3): 99-105.
Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti,
M.G., Fracchia, L., Smyth, T.J. & Marchant, R. 2010. Microbial
biosurfactants production, applications and future potential.
Appl. Microbiol. Biotechnol. 87: 427-444.
Bradley, J. & Schmid, R.D. 1991. Optimisation of a biosensor for in situ fermentation monitoring of glucose
concentration. Biosens. Bioelectron 6: 669-674.
Casas, J., Garcia, D.L.S. & Garcia-Ochoa, F. 1997. Optimization of a synthetic medium for Candida
bombicola growth using factorial
design experiment. Enzyme Microb.
Tech. 21: 221-229.
Chen, C., Bake, S. & Darton, R. 2007. The application of a high throughput analysis
method for the screening of potential biosurfactant
from natural source. J. Microbiol.
Meth. 70: 503-510.
Cooper, D., Macdonald, C.R., Duff, S. & Kosaric,
N. 1981. Enhance production of surfactin from Bacillus subtilis by continuos product removal and metal cation addition. J.
Appl. Environ. Microbiol. 42: 408-412.
Danielsson, B. 1991. Fermentation
monitoring. Curr. Opin. Biotech. 2: 17-22.
Davis, D., Lynch, H. & Varley, J. 2001. The application of foaming for the recovery of
surfactin from B. subtilis ATCC 21332 cultures.
Enzyme Microb.
Tech. 28: 346-354.
Davis, D., Lynch, H. & Varley, J. 1999. The production of surfactin in batchculture by Bacillus subtilis ATCC 21332 is strongly
influenced by the conditions of nitrogen metabolism. Enzyme Microb. Tech. 25:
322-329.
de Oliveira, F.D.W., Franca,
I.W.L., Felix, A.K.N., Martins, J.L., Giro, M.E.A., Melo,
V.M.M. & Goncalves, L.R.B. 2013.
Kinetic study of biosurfactant production
by Bacillus subtilis LAM005 grown in clarified cashew apple
juice. Colloid Surface B 101: 34-43.
Dondo, R.G. 2001. A method
for detection and diagnosis on batch fermentations. ISA
Transactions 42(1): 135-147.
Driks, A. 2002. Overview: Development in bacteria:
Spore formation in Bacillus subtilis. Journal of Cellular
and Molecular Life Sciences 59: 389-391.
Fernandes, P., de Aruda, I. & dos Santos, A.
2007. Antimicrobial activity of surfactants produced
by Bacillus subtilis R14 against multidrug bacteria.
Braz. J. Microbiol. 38: 704-709.
Fox, S.L. & Bala, G.A. 2000. Production of surfactant from Bacillus subtilis ATCC 21332
using potato substrate. Bioresource
Technol. 75: 235-240.
Georgiou, G., Lin, S. & Sharma, M. 1992. Surface-active compounds from microorganisms. Biotechnology
10: 60-65.
Hanko, V.P. & Rohrer, J.S. 2000. Determination
of carbohydrates, sugar alcohols, and glycolsin
cells cultures and fermentation broths using high-performance
anion-exchange chromatogrpahy with pulsed amperometric
detection. Anal. Biochem. 283: 192-199.
Isa, M.H.M.,
Coraglia, D., Frazier, R. & Jauregi, P. 2007. Recovery and purification
of surfactin from fermentation broth
by a two-step ultrafiltration process. J. Membrane Sci.
296: 51-57.
Isa, M.H.M.,
Frazier, R. & Jauregi, P. 2008.
A further study of the recovery and purification of surfactin from fermentation broth by membrane filtration.
J. Sep. Purif. Technol. 64: 176-182.
Joshi, S., Bhaucha, C. & Desai, A.J.
2008. Production of biosurfactant
and antifungal compound by fermented food isolat
Bacillus subtilis 20B. Bioresource Technol. 99: 4603- 4608.
Kim, H.S., Yoon, B.D., Lee, C.H., Oh, H.M., Katsuragi,
T. & Tani, Y. 1997. Production and properties of a lipopeptide
biosurfactant from Bacillus subtilis
C9. J. Fermentation Bioeng.
84: 41-46.
Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P. & Ziessow, D. 1998. Separation
and characterization of surfactin isoforms
produced by Bacillus subtilis OKB 105. J. Colloid
Interf. Sci. 204: 1-8.
Lin, S., Carswell, K., Sharma, M. & Georgiau,
G. 1994. Continuos production of the lipopeptide biosurfactant of Bacillus licheniformis
JF-2. Appl. Microbiol.
Biot. 41:
281-285.
Mulligan, C.N. 2005. Environmental
applications for biosurfactants.
Environ. Pollut.
133: 183-198.
Neves, L., Oliveira, K., Kobayashi, M., Penna, T. & Converti, A. 2007. Biosurfactant production by cultivation
of Bacillus atrophaeus ATCC 9372
in semidefined glucose/casein-based
media. Appl. Biochem. Biotechnol. 136: 136-140.
Nitschke, M. & Pastore, G. 2006. Production and properties
of a surfactant obtained from Bacillus subtilis grown on
cassava wastewater. Bioresource
Technol. 97: 336-341.
Okpokwasili, G. &
Nweke, C. 2008. Microbial
growth and substrate utilization kinetics. Afr. J. Biotechnol. 5(4): 305-317.
Ramirez, I.M., Tsaousi, K., Rudden, M., Marchant, R., Alameda, E.J., Roman, M.G. &
Banat, I.M. 2015. Rhamnolipid and surfactin production from olive oil
mill waste as sole carbon source. Bioresource
Technology 198: 231-236.
Rodrigues, L., Moldes, A., Teixeira, J.
& Oliveira, R. 2006. Kinetic study of fermentative biosurfactant production by Lactobacillus strain.
J. Biochem. Eng. 28: 109-116.
Shannaq, M. & Isa, M.H.M.
2013. Isolation and molecular identification of surfactin producing B. subtilis. International Conference on Biochemical, Pharmaceutical Sciences and
Chemical Engineering, Kuala Lumpur.
Shepard, O. & Mulligan, C. 1987. The production of surfactin by Bacillus
subtilis grown on peat hydrolysate. Appl. Microbiol.
Biot.
29: 110-116.
Singh, P.
& Cameotra, S. 2004. Potential
applications of microbial surfactants in biomedical sciences.
Trends Biotechnol. 22:
142-146.
Sousa, M., Dantas, I.T., Feitosa, F.X., Alencar, A.E.V.,
Soares, S.A., Melo, V.M.M., Goncalves, L.R.B. & Sant’ana,
H.B. 2014. Performance of biosurfactant produced
by Bacillus subtilis LAMI005 on the formation of iol/biosurfactant/ water emulsion: Study of phase behavior of
emulsified systems. Brazilian Journal of Chemical Engineering
31: 613-623.
Wei, Y-H., Wang, M., Chang, J-S. & Kung, S-S. 2003.
Identification of induced acidification in iron-eniched
cultures of Bacillus subtilis during biosurfactant
fermentation. J. Biosci. Bioeng. 96: 174-178.
Wei, Y-H., Lai, C. & Chang, J-S. 2007. Using
Taguchi experimental design methods to optimize trace element
composition for enhanced surfactin production
by Bacillus subtilis ATCC 21332. Process
Biochem. 42: 40-45.
Xiao, X., Chen, H., Wang, J. & Ren, C. 2008. Impact of Bacillus subtilis JA, a biocontrol strain of fungal
plant pathogens, on arbuscular mycorrhiza formation in zeamays. World J. Microb. Biot. 24: 1133-1137.
Yakimov, M., Amro, M. & Bock, M. 1997. The potential
of Bacillus licheniformis strains
for in situ enhanced oil recovery. J. Petrol. Sci. Eng.
18: 147-160.
Zweers, J.C., Barak, L., Becher,
D. & Driessen, A. 2008. Towards the development of Bacillus subtilis as a cell factory
for membrane proteins and protein complexes. J. Microb. Cell Fact. 7: 1-20.
*Pengarang untuk surat-menyurat; email: m.hafez@usim.edu.my