Sains Malaysiana 46(9)(2017): 1557–1563
http://dx.doi.org/10.17576/jsm-2017-4609-26
Acrylamide Optical Sensor Based on Hydrolysis Using
Bacillus sp. Strain ZK34 Containing Amidase Properties
(Sensor Optik Akrilamida Berasaskan Hidrolisis
Menggunakan Bacillus sp. Strain ZK34 yang Mengandungi
Sifat Amidase)
YEE-MAY
CHONG1,
MUSA
AHMAD1,2*,
LEE
YOOK
HENG1,
NORZILA
KUSNIN3
& MOHD YUNUS ABDUL
SHUKOR3
1School of Chemical Sciences
and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Industrial Chemical Technology
Programme, Faculty of Sciences and Technology
Universiti Sains Islam
Malaysia, 71800 USIM Nilai, Negeri Sembilan Darul Khusus, Malaysia
3Department of Biochemistry,
Faculty of Biotechnology and Biomolecular Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 16 Januari
2017/Diterima: 11 Mei 2017
ABSTRACT
In this work, a new
optical screening method for acrylamide was developed. Bacterial
Bacillus sp. strain ZK 34 was used to hydrolyse acrylamide
to the corresponding acid and ammonia. Nessler’s reagent was
used to detect the produced ammonia and the yellow complex formed
was treated as signal. Bacterial pellet was immobilised in the
alginate membrane. The optimum composition of alginate used
is 2%. The mass ratio of alginate:bacterial of 1:0.5 gave the
optimum respond. Optimum concentration for NaOH and Nessler’s
reagent were 0.075 M and 2.5 mM, respectively. The yellow complex
of mercury (II) amido-iodine formed was directly proportional
to the concentrations of acrylamide up to 50.00 ppm with the
limit of detection of 1.30 ppm. This sensor shows a good reproducibility
which the relatives standard deviation (RSD)
values from 3.17-6.15%. Therefore, the detection of acrylamide
based on the amidase hydrolysis is suitable for screening this
carcinogen compound.
Keywords: Acrylamide;
amidase; Nessler’s reagent; optical detection
ABSTRAK
Dalam kajian ini, satu
kaedah baharu untuk penyaringan akrilamida secara optik telah
dibangunkan. Bakteria Bacillus sp. strain ZK 34 telah digunakan untuk menghidrolisiskan
akrilamida kepada asid yang sepadan dan amonia. Reagen Nessler
telah digunakan untuk mengesan amonia yang terhasil dan pembentukan
sebatian kuning diambil kira sebagai isyarat. Palet bakteria
telah dipegunkan di dalam membran alginat. Komposisi alginat
yang optimum digunakan ialah 2%. Nisbah jisim alginat:bakteria
pada 1:0.5 memberi rangsangan yang optimum. Kepekatan NaOH dan
reagen Nessler yang optimum masing-masing ialah 0.075 M dan
2.5 mM. Sebatian kuning iaitu raksa (II) amido-iodin yang terbentuk
berkadar langsung dengan kepekatan akrilamida sehingga 50.00
ppm dengan had pengesanan 1.30 ppm. Sensor ini menunjukkan kebolehulangan
yang baik iaitu sisihan paiwai relatif (RSD)
daripada 3.17-6.15%. Maka pengesanan akrilamida berasaskan hidrolisis
amidase adalah sesuai untuk penyaringan sebatian yang karsinogen
ini.
Kata kunci: Akrilamida; amidase; pengesanan optik; reagen Nessler
RUJUKAN
Arip,
M.N.M., Heng, L.Y., Ahmad, M. & Ujang, S. 2013. A cell-based
potentiometric biosensor using the fungus lentinus sajor-caju
for permethrin determination in treated wood. Talanta 116:
776-781.
Batra,
B., Lata, S. & Pundir, C.S. 2013a. Construction of an improved
amperometric acrylamide biosensor based on hemoglobin immobilized
onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan
composite film. Bioprocess and Biosystems Engineering 36(11):
1591-1599.
Batra,
B., Lata, S., Sharma, M. & Pundir, C.S. 2013b. An acrylamide
biosensor based on immobilization of hemoglobin onto multiwalled
carbon nanotube/copper nanoparticles/ polyaniline hybrid film.
Analytical Biochemistry 433(2): 210-217.
Batra,
B. & Pundir, C.S. 2016. Detection of acrylamide by biosensors.
In Acrylamide in Food: Analysis, Content and Potential Health
Effects, edited by Gökmen, V. Amsterdam: Academic Press.
pp. 497-505.
Friedman,
M. 2003. Chemistry, biochemistry, and safety of acrylamide.
A review. Journal of Agricultural and Food Chemistry 51(16):
4504-4526.
Garabagiu,
S. & Mihailescu, G. 2011. Simple hemoglobin-gold nanoparticles
modified electrode for the amperometric detection of acrylamide.
Journal of Electroanalytical Chemistry 659(2): 196-200.
Hu,
Q., Xu, X., Fu, Y. & Li, Y. 2015. Rapid methods for detecting
acrylamide in thermally processed foods: A review. Food Control
56: 135-146.
IARC.
1994. Monographs on the Evaluation of Carcinogenic Risks
to Humans, Some Industrial Chemicals Ed. 60. Lyon, France:
International Agency for Research on Cancer.
Ignatov,
O.V., Rogatcheva, S.M., Kozulin, S.V. & Khorkina, N.A. 1997.
Acrylamide and acrylic acid determination using respiratory
activity of microbial cells. Biosensors and Bioelectronics
12(2): 105-111.
Kepekci
Tekkeli, S.E., Önal, C. & Önal, A. 2012. A review of current
methods for the determination of acrylamide in food products.
Food Analytical Methods 5(1): 29-39.
Krajewska,
A., Radecki, J. & Radecka, H. 2008. A voltammetric biosensor
based on glassy carbon electrodes modified with single-walled
carbon nanotubes/hemoglobin for detection of acrylamide in water
extracts from potato crisps. Sensors 8(9): 5832-5844.
Lineback,
D.R., Coughlin, J.R. & Stadler, R.H. 2012. Acrylamide in
foods: A review of the science and future considerations. Annual
Review of Food Science and Technology 3: 15-35.
Ling,
Y.P. & Heng, L.Y. 2014. Reflectance based sensor for carrageenan
utilizing methylene blue embedded acrylic microspheres. Sensors
and Actuators B: Chemical 192: 247-252.
Nawaz,
M.S., Khan, A.A., Seng, J.E., Leakey, J.E., Siitonen, P.H. &
Cerniglia, C.E. 1994. Purification and characterization of an
amidase from an acrylamide-degrading Rhodococcus sp.
Applied and Environmental Microbiology 60(9): 3343-3348.
Paleologos,
E.K. & Kontominas, M.G. 2005. Determination of acrylamide
and methacrylamide by normal phase high performance liquid chromatography
and UV detection. Journal of Chromatography A 1077(2):
128-135.
Prabu,
C.S. & Thatheyus, A.J. 2007. Biodegradation of acrylamide
employing free and immobilized cells of Pseudomonas aeruginosa.
International Biodeterioration & Biodegradation 60:
69-73.
Shukor,
M.Y., Gusmanizar, N., Azmi, N.A., Hamid, M., Ramli, J., Shamaan,
N.A. & Syed, M.A. 2009. Isolation and characterization of
an acrylamide-degrading Bacillus cereus. Journal of Environmental
Biology 30(1): 57-64.
Silva, N.A.F., Matos,
M.J., Karmali, A. & Racha, M.M. 2011. An electrochemical
biosensor for acrylamide detection: Merits and limitations.
Portugaliae Electrochimica Acta 29: 361-373.
Silva, N., Gil, D., Karmali,
A. & Matos, M. 2009. Biosensor for acrylamide based on an
ion-selective electrode using whole cells of Pseudomonas
aeruginosa containing amidase activity. Biocatalysis
and Biotransformation 27(2): 143-151.
Stobiecka, A., Radecka,
H. & Radecki, J. 2007. Novel voltammetric biosensor for
determining acrylamide in food samples. Biosensors and Bioelectronics
22(9-10): 2165-2170.
Supian, S.M., Ling, T.L.,
Heng, L.Y. & Chong, K.F. 2013. Quantitative determination
of Al(III) ion by using Alizarin Red S including its microspheres
optical sensing material. Analytical Methods 5(10): 2602-2609.
Syed, M.A., Ahmad, S.A.,
Kusnin, N. & Shukor, M.Y.A. 2012. Purification and characterization
of amidase from acrylamide-degrading bacterium Burkholderia
sp. strain DR. Y27. Afican Journal of Biotechnology 11:
329-336.
Tareke, E., Rydberg,
P., Karlsson, P., Eriksson, S. & Törnqvist, M. 2002. Analysis
of acrylamide, a carcinogen formed in heated foodstuffs. Journal
of Agricultural and Food Chemistry 50(17): 4998-5006.
Timmer, B., Olthuis,
W. & Berg, A.v.d. 2005. Ammonia sensors and their applications-A
review. Sensors and Actuators B: Chemical 107(2): 666-677.
Zyzak, D.V., Sanders,
R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald,
D.K., Gruber, D.C., Morsch, T.R., Strothers, M.A., Rizzi, G.P.
& Villagran, M.D. 2003. Acrylamide formation mechanism in
heated foods. Journal of Agricultural and Food Chemistry
51(16): 4782-4787.
*Pengarang
untuk surat-menyurat; email: andong@usim.edu.my