Sains Malaysiana 46(9)(2017): 1659–1665
http://dx.doi.org/10.17576/jsm-2017-4609-39
As-spun Bio-novolac Fibre Morphological Study based on Resin’s
Physico-chemical Properties
(Kajian Morfologi Gentian Bio-novolak Licin dan Nipis berdasarkan
Sifat Fiziko-kimia Resin)
SITI NOORUL
AINA
AB
RAHIM1,
SARANI
ZAKARIA1*,
SHARIFAH
NABIHAH
SYED
JAAFAR1,
CHIN
HUA
CHIA1,
RASIDI
ROSLAN2,
HATIKA
KACO1
& SINYEE GAN1
1Bioresources and Biorefinery
Laboratory, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
2Faculty of Industrial
Science & Technology, Universiti Malaysia Pahang, Lebuhraya
Tun Razak
26300 Gambang, Kuantan,
Pahang Darul Makmur, Malaysia
Diserahkan: 19 Disember
2016/Diterima: 17 Mac 2017
ABSTRACT
Bio-novolac fibre made
from phenol-formaldehyde derived oil palm empty fruit bunch
(EFB)
was produced using electrospinning method. The bio-novolac phenol-formaldehyde
was prepared via liquefaction and resinification at two different
molar ratios of formaldehyde to liquefied EFB (LEFB)
(F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to
the bio-novolac phenol-formaldehyde (BPF) in order to form smooth and
thin as-spun fibre. The BPF was electrospun at 15 kV and
15 cm distance between needle and collector at a flow rate of
0.5 mL/h. At lower molecular weight of BPF resin, beads formation was observed.
The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000)
has improved the fibre formation with lesser beads hence produced
more fibre. Polymer solution with higher molecular weight produced
better quality fibre.
Keywords: Electrospinning;
molecular weight; oil palm empty fruit bunch; phenolic resin;
poly(vinyl) butyral
ABSTRAK
Gentian bio-novolak
yang dihasilkan menggunakan fenol-formaldehid terbitan tandan
kosong kelapa sawit (TKKS) telah dihasilkan menggunakan kaedah elektroputaran.
Bio-novolak fenol-formaldehid telah disediakan melalui pencecairan
dan resinifikasi pada dua nisbah molar berbeza iaitu formaldehid
kepada TKKS
Tercecair (TKKST) (F:TKKST =
0.5:1 dan 0.8:1). Kaedah elektroputaran telah digunakan pada
resin bio-novolak fenol-formaldehid (BFF) bagi membentuk gentian licin dan
nipis. BFF telah dielektroputaran pada voltan 15 kV dengan jarak
15 cm antara jarum dan pemungut pada kadar aliran 0.5 mL/jam.
Pada berat molekul resin BFF lebih rendah, pembentukan manik dapat diperhatikan.
Penambahan poli (vinil) butiral (Mw = 175,000 - 250,000) telah
menambah baik pembentukan gentian dengan kehadiran manik yang
berkurang. Larutan polimer dengan berat molekul yang lebih tinggi
telah menghasilkan gentian yang lebih berkualiti.
Keywords: Berat molekul;
elektroputaran; poli(vinil) butiral; resin fenolik; tandan kosong
kelapa sawit
RUJUKAN
Ahmadzadeh,
A., Zakaria, S. & Mohammad, D. 2008. Preparation of Novolak
type resin by liquefaction of palm oil empty fruit bunch (EFB)
using sulphuric acid as a catalyst. Iranian Polymer Journal
17(6): 441-449.
Ahn,
Y., Lee, S.H., Kim, H.J., Yang, Y.H., Hong, J.H., Kim, Y.H.
& Kim, H. 2012. Electrospinning of lignocellulosic biomass
using ionic liquid. Carbohydrate Polymers 88: 395-398.
Ahn,
Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G. & Shin,
H.S. 2006. Development of high efficiency nanofilters made of
nanofibers. Current Applied Physics 6: 1030-1035.
Alma,
M.H., Yoshioka, M., Yao, Y. & Shiraishi, N. 1995. Preparation
and characterization of the phenolated wood using hydrochloric
acid (HCl) as a catalyst. Wood Science and Technology 30(1):
39-47.
Amran,
U.A., Zakaria, S. & Chin, C.H. 2013. Epoxidized natural
rubber toughened aqueous resole type liquefied EFB resin: Physical
and chemical characterization. AIP Publishing 1: 158-162.
Amran, U.A., Zakaria,
S., Chin, C.H., Jaafar, S.N.S. & Rasidi, R. 2015. Mechanical
properties and water absorption of glass fibre reinforced bio-phenolic
elastomer (BPE) composite. Industrial Crops and Products
72: 54-59.
Bari,
M.N., Alam, M.Z., Muyibi, S.A., Jamal, P. & Mamun, A.A.
2010. Effect of particle size on production of citric acid from
oil palm empty fruit bunches as new substrate by wild Aspergillus
niger. Journal of Applied Polymer Science 10(21):
2648-2652.
Bhardwaj,
N. & Kundu, S.C. 2010. Electrospinning: A fascinating fiber
fabrication technique. Biotechnology Advances 28: 325-347.
Brydson,
J.A. 1975. Plastics Materials. 6th ed. Oxford: Butterworth-Heinmann
Ltd. p. 172.
Chin,
S.X., Chin, C.H., Zakaria, S., Fang, F. & Ahmad, S. 2015.
Ball milling pretreatment and diluted acid hydrolysis of oil
palm empty fruit bunch (EFB) fibres for the production of levulinic
acid. Journal of the Taiwan Institute of Chemical Engineers
52: 85-92.
Demirbas,
M.F. & Balat, M. 2006. Recent advances on the production
and utilization trends of bio-fuels: A global perspective. Energy
Conversion Management 47: 2371-2381.
Doh,
G.H., Lee, S.Y., Kang, I.A. & Kong, Y.T. 2005. Thermal behavior
of liquefied wood polymer composites (LWPC). Composite Structures
68(1): 103-108.
Gan,
S.Y., Zakaria, S., Ng, P., Chin, C.H. & Chen, R.S. 2015.
Effect of acid hydrolysis and thermal hydrolysis on solubility
and properties of oil palm empty fruit bunch fiber cellulose
hydrogel. BioResources 11(1): 126-139.
Global
Palm Oil Production. 2016. Global palm oil production by country.
http://www.globalpalmoilproduction.com/. Accessed on 23 October
2016.
Gomes,
D.S., da Silva, A.N.R., Morimoto, N.I., Mendes, L.T.F., Furlan,
R. & Ramos, I. 2007. Characterization of an electrospinning
process using different PAN/DMF concentrations. Polímeros:
Ciência e Tecnologia 17(3): 206-211.
He,
J., Wan, Y.Q. & Yu, J.Y. 2005. Scaling law in electrospinning:
Relationship between electric current and solution flow rate.
Polymer 46: 2799-2801.
Hui,
P. 2011. Synthesis of polymers from organic solvent liquefied
biomass: A review. Renewable and Sustainable Energy Reviews
15: 3454-3463.
Hunley,
M.T. & Long, T.E. 2008. Electrospinning functional nanoscale
fibers: A perspective for the future. Polymer International
57: 385-389.
Imaizumi,
S., Matsumoto, H., Suzuki, K., Minagawa, M., Kimura, M. &
Tanioka, A. 2009. Phenolic resin-based carbon thin fibers prepared
by electrospinning: Additive effects of poly(vinyl butyral)
and electrolytes. Polymer Journal 41(12): 1124-1128.
Jianying,
H., Miaoqing, X., Qiang, G., Minghua, L., Qiang, L., Yihong,
C., Jiayan, C., Lizong, D. & Yousi, Z. 2005. Controlled
synthesis of high-ortho-substitution phenol-formaldehyde resins.
Journal of Applied Polymer Science 97: 652-658.
Juhaida,
M.F., Paridah, M.T., Mohd. Hilmi, M., Sarani, Z., Jalaluddin,
H. & Mohamad Zaki, A.R. 2010. Liquefaction of kenaf (Hibiscus
cannabinus L.) core for wood laminating adhesive. Bioresource
Technology 101(4): 1355-1360.
Kavitha,
B., Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch
- A potential organic manure for agriculture. International
Journal of Science, Environment and Technology 2(5): 930-937.
Koski,
A., Yim, K. & Shivkumar, S. 2004. Effect of molecular weight
on fibrous PVA produced by electrospinning. Materials Letters
58: 493-497.
Lannutti,
J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. 2007.
Electrospinning for tissue engineering scaffolds. Material
Science Engineering 27: 504-509.
Liang,
D., Hsiao, B.S. & Chu, B. 2007. Functional electrospun nanofibrous
scaffolds for biomedical applications. Advanced Drug Delivery
59: 1392-1412.
Maldas,
D., Shiraishi, N. & Harada, Y. 1997. Phenolic resol resin
adhesives prepared from alkali-catalyzed liquefied phenolated
wood and used to bond hardwood. Journal Adhesives Science
Technology 11: 305-316.
Moubarik,
A., Pizzi, A., Allal, A., Charrier, F. & Charrier, B. 2009.
Cornstarch and tannin in phenol-formaldehyde resins for plywood
production. Industrial Crops and Products 30(2): 188-193.
Noreen,
F.M.Z. & Zakaria, S. 2011. Hydroxypropylation of empty fruit
bunches fibre using polyethylene glycol (PEG). Sains Malaysiana
42(3): 307-318.
Plastics
Today. 2014. Automotive market drives global phenolic resin
demand. http://www.plasticstoday.com/ content/automotive-market-drives-global-phenolic-resin-demand/74034086420977.
Accessed 25 October 2016.
Ramakrishna,
S., Fujihara, K., Teo, W.W., Lim, T.C. & Ma, Z. 2005. An
Introduction to Electrospinning and Nanofibres. Singapore:
World Scientific.
Raquez,
J.M., Deléglise, M., Lacrampe, M.F. & Krawczak, P. 2010.
Thermosetting (bio) materials derived from renewable resources:
A critical review. Progress in Polymer Science 35: 487-509.
Reneker,
D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer
nanofibers. Polymer 49: 2387-2425.
Robert,
A.H. & Terry, S.J. 1994. Characterizations of phenol-formaldehyde
resol resins. Industrial & Engineering Chemistry Research
33: 693-697.
Roslan,
R., Zakaria, S., Chin, H.C., Boehm, R. & Laborie, M.P. 2014.
Physico-mechanical properties of resol phenolic adhesives derived
from liquefaction of oil palm empty fruit bunch fibres. Industrial
Crops and Products 62: 119-124.
Said,
F.M. 2010. Liquefaction of cotton stalks (Gossypium hirsutum
L.) with phenol. Wood Research 55(2): 71-80.
Sajab,
M.S., Chin, C.H., Zakaria, S. & Sillanpää, M. 2015. Fixed-bed
column studies for the removal of cationic and anionic dyes
by chemically modified oil palm empty fruit bunch fibers: Single-and
multi-solute systems. Desalination and Water Treatment 55(5):
1372-1379.
Suzuki,
K., Matsumoto, H., Minagawa, M., Kimura, M. & Tanioka, A.
2007. Preparation of carbon fiber fabrics from phenolic resin
by electrospray deposition. Polymer Journal 39(11): 1128-1134.
Thompson,
C.J., Chase, G.G., Yarin, A.L. & Reneker, D.H. 2007. Effects
of parameters on nanofiber diameter determined from electrospinning
model. Polymer 48: 6913-6922.
Tian,
Z., Zhang, W. & Lu, W. 2016. Preparation of nanofibres from
phenol liquefied wood by electrospinning. Nanomaterials and
Nanotechnology. https://doi.org/10.5772/62287.
Yoshida,
C. & Okabe, K. 2005. Preparation of carbon fibers from biomass-based
phenol-formaldehyde resin. Journal of Materials Science 40:
335-339.
Zakaria,
S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of
Novolak-type resin made from liquefaction of oil palm empty
fruit bunch (EFB) fibres using sulfuric acid as a catalyst.
BioResources 8(4): 5884-5894.
Zakaria, S., Roslan,
R., Amran, U.A., Chin, C.H. & Bakaruddin, S.B. 2014. Characterization
of residue from EFB and kenaf core fibres in the liquefaction
process. Sains Malaysiana 43(3): 429-435.
Zussman, E., Theron,
A. & Yarin, A.L. 2003. Formation of nanofiber crossbars
in electrospinning. Applied Physics Letters 82: 973-975.
*Pengarang
untuk surat-menyurat; email: szakaria@ukm.edu.my