Sains Malaysiana 47(10)(2018): 2301–2310

http://dx.doi.org/10.17576/jsm-2018-4710-06

 

Antibacterial and Sporicidal Activities of Syzygium polyanthum L. Extract against Bacillus cereus Isolated from Rice

(Aktiviti Antibakteria dan Sporisid Ekstrak Syzygium polyanthum L. terhadap Bacillus cereus yang Dipencil daripada Nasi)

 

SUZITA RAMLI1, LAU KAH YAN2 & YAYA RUKAYADI1*

 

1Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 12 Ogos 2016/Diterima: 5 Jun 2018

 

 

ABSTRACT

Spore-forming bacteria, Bacillus sp., frequently been associated with the contamination of rice and other starchy products. Spores are more resistant to antimicrobial treatments than its vegetative cells. The extract of Indonesian bay leaf (Syzygium polyanthum L.) was assessed for its antibacterial and sporicidal activities against vegetative cells and spores of B. cereus isolated from rice (25 strains). The results showed that S. polyanthum L. extract was able to inhibit the growth of vegetative cells of all B. cereus isolates with MICs ranged from 0.16 to 0.63 mg/mL and can kill with MBCs ranged from 0.31 to 2.50 mg/mL. The bactericidal endpoint for B. cereus BC-NP.8 in time kill curve was at 1.25 mg/mL (8× MIC) after 4 h of incubation while for B. cereus ATCC 33019 was at 2.50 mg/mL (8× MIC). The sporicidal activity of S. polyanthum L. extract was not affected by different temperatures treatment and alteration of the pHs of extract. Therefore, this indicates that the extract was stable after exposed to pH3, 7 and 10 as well as temperature of 50, 80, and 121°C. Observation under on scanning electron microscope the structure of the B. cereus ATCC 33019 spores was ruptured after being treated with 1% (w/v) S. polyanthum L. extract for 1 h. In conclusion, S. polyanthum L. extract had antibacterial and sporicidal activity against vegetative cells and spores of B. cereus isolated from rice.

 

Keywords: Antibacterial; B. cereus; rice; sporicidal; Syzygium polyanthum L.

ABSTRAK

Bakteria pembentuk spora seperti Bacillus sp., sering dikaitkan dengan pencemaran nasi dan produk-produk yang berkanji. Spora mempunyai rintangan yang lebih tinggi terhadap rawatan antimikrob daripada sel-sel vegetatif. Ekstrak daun salam (S. polyanthum L.) telah diuji untuk aktiviti antibakteria dan antisporisid terhadap sel vegetatif dan spora 25 B. cereus yang dipencil daripada nasi. Ekstrak S. polyanthum L. boleh merencat pertumbuhan semua Bacillus sp. yang diuji dengan MIC dalam lingkungan 0.16 hingga 0.63 mg/mL dan boleh membunuh semua Bacillus sp. yang diuji dengan MBC adalah dalam lingkungan 0.31 hingga 2.50 mg/mL. Titik akhir bakterisid B. cereus BC-NP.8 untuk keluk masa-pembunuhan ialah 1.25 mg/mL (8× MIC) selepas inkubasi selama 4 jam dan untuk B. cereus ATCC 33019 ialah pada 2.50 mg/mL (8× MIC). Aktiviti sporisid ekstrak S. polyanthum L. tidak terjejas dengan pengubahan pH ekstrak dan rawatan suhu yang berbeza. Keputusan kajian ini menunjukkan bahawa ekstrak tersebut adalah stabil terhadap perubahan kepada pH3, 7 dan 10 serta suhu 50, 80 dan 121°C. Berdasarkan pemerhatian dengan mikroskop elektron imbasan, struktur spora B. cereus ATCC 33019 musnah selepas dirawat dengan 1% (w/v) ekstrak S. polyanthum L. selama 1 jam. Secara keseluruhannya, ekstrak S. polyanthum L. menunjukkan potensi dalam aktiviti antibakteria dan sporisid terhadap sel vegetatif dan spora Bacillus sp.

 

Kata kunci: Antibakterial; B. cereus; nasi; sporisid; Syzygium polyanthum L.

RUJUKAN

Altayar, M. & Sutherland, A.D. 2006. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. Journal of Applied Microbiology 100(1): 7-14.

Alzoreky, N.S. & Nakahara, K. 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. International Journal of Food Microbiology 80(3): 223-230.

Ballantyne, B. & Jordan, S.L. 2001. Toxicological, medical and industrial hygiene aspects of glutaraldehyde with particular reference to its biocidal use in cold sterilization procedures. Journal of Applied Toxicology 21(2): 131-151.

Barker, G.C., Malakar, P.K. & Peck, M.W. 2005. Germination and growth from spores: Variability and uncertainty in the assessment of food borne hazards. International Journal of Food Microbiology 100(1-3): 67-76.

Ciarciaglini, G.P.J., Hill, K., Davies, P.J., McClure, D., Kilsby, M.H. & Brown, P.J. 2000. Germination-induced bioluminescence, a route to determine the inhibitory effect of a combination preservation treatment on bacterial spores. Applied Environment Microbiology 66: 3735-3742.

Cho, W.I., Choi, J.B., Lee, K., Chung, M.S. & Pyun, Y.R. 2008. Antimicrobial activity of torilin isolated from Torilis japonica fruit against Bacillus subtilis. Journal of Food Science 73(2): 37-46.

Choi, S., Kim, H., Kim, Y., Kim, B.S., Beuchat, L.R. & Ryu, J.H. 2014. Fate of Bacillus cereus and naturally occurring microbiota on milled rice as affected by temperature and relative humidity. Food Microbiology 38(0): 122-127.

Clinical and Laboratory Standards Institute (CLSI). 2012. Reference method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition; CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

Jun, H., Kim, J., Bang, J., Kim, H., Beuchat, L.R. & Ryu, J.H. 2013. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal. International Journal of Food Microbiology 160(3): 260-266.

Kato, E., Nakagomi, R., Gunawan-Puteri, M.D.P.T. & Kawabata, J. 2013. Identification of hydroxychavicol and its dimers, the lipase inhibitors contained in the Indonesian spice, Eugenia polyantha. Food Chemistry 136(3-4): 1239-1242.

Kida, N., Mochizuki, Y. & Taguchi, F. 2004. An effective iodide formulation for killing Bacillus and Geobacillus spores over a wide temperature range. Journal of Applied Microbiology 97(2): 402-409.

Kim, B., Bang, J., Kim, H., Kim, Y., Kim, B.S., Beuchat, L.R. & Ryu, J.H. 2014. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: Prevalence and toxin production as affected by production area and degree of milling. Food Microbiology 42(0): 89-94.

Kim, S.A., Lee, M.K., Park, T.H. & Rhee, M.S. 2013. A combined intervention using fermented ethanol and supercritical carbon dioxide to control Bacillus cereus and Bacillus subtilis in rice. Food Control 32(1): 93-98.

Lau, K.Y., Zainin, N.S., Abas, F. & Rukayadi, Y. 2014. Antibacterial and sporicidal activity of Eugenia polyantha Wight against Bacillus cereus and Bacillus subtilis. International Journal of Current Microbiology and Applied Sciences 3(12): 499-510.

Leggett, M.J., McDonnell, G., Denyer, S.P., Setlow, P. & Maillard, J.Y. 2012. Bacterial spore structures and their protective role in biocide resistance. Journal of Applied Microbiology 113(3): 485-498.

Negi, P.S. 2012. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. International Journal of Food Microbiology 156(1): 7-17.

Rukayadi, Y., Lee, K., Han, S., Kim, S. & Hwang, J.K. 2009. Antibacterial and sporicidal activity of macelignan isolated from nutmeg (Myristica fragrans Houtt.) against Bacillus cereus. Food Science and Biotechnology 18(5): 1301-1304.

Rukayadi, Y., Shim, J.S. & Hwang, J.K. 2008. Screening of Thai medicinal plants for anticandidal activity. Mycoses 51(4): 308-312.

Rukayadi, Y. & Hwang, J.K. 2007. The effects of xanthorrhizol on the morphology of Candida cells examined by scanning electron microscopy. Microbiology Indonesia 1(2): 98-100.

Rutala, W.A. & Weber, D.J. 1999. Disinfection of endoscopes review of new chemical sterilants used for high-level disinfection. Infection Control 20(01): 69-76.

Sandra, A., Afsah-Hejri, L., Tunung, R., Tuan Zainazor, T.C., Tang, J.Y.H., Ghazali, F.M., Nakaguchi, Y., Nishibuchi, M. & Son, R. 2012. Bacillus cereus and Bacillus thuringiensis in ready-to-eat cooked rice in Malaysia. International Food Research Journal 19(3): 829-836.

Setiawan, C. P. 2002. Effect of chemical and physical treatment of the antimicrobial activity of leaves (Syzygium polyanthum (Wight) Walp). Thesis. Faculty of Agricultural Technology, Bogor Agricultural University, Bogor (Unpublished).

Sumono, A. & Wulan, A.S. 2008. The use of bay leaf (Eugenia polyantha Wight) in dentistry. Dental Journal 41(3): 147-150.

Tan, I.S. & Ramamurthi, K.S. 2013. Spore formation in Bacillus subtilis. Environmental Microbiology Reports 6(3): 212-225.

 

*Pengarang untuk surat-menyurat; email: yaya_rukayadi@upm.edu.my

 

 

 

 

 

sebelumnya