Sains Malaysiana 47(10)(2018): 
                  2509–2517 
                http://dx.doi.org/10.17576/jsm-2018-4710-28
                 
                Testosterone Down-Regulates 
                  Expression of αvβ3-Integrin, 
                  E-Cadherin and Mucin-1 during Uterine Receptivity Period in 
                  Rats
                (Testosteron Menindas 
                  Ekspresi αvβ3-Integrin, E-Cadherin 
                  dan Mucin-1 semasa Tempoh 
                  Reseptif Rahim dalam 
                  Tikus)
                 
                HELMY MOHD MOKHTAR1*, 
                  NELLI 
                  GIRIBABU2 
                  & NAGUIB SALLEH2*
                 
                1Department of Physiology, Faculty 
                  of Medicine, Universiti Kebangsaan 
                  Malaysia Medical Center, Jalan Yaacob 
                  Latiff, Bandar Tun 
                  Razak, 56000 Cheras, Kuala Lumpur, 
                  Federal Territory, Malaysia
                 
                2Department of Physiology, Faculty 
                  of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal 
                  Territory, Malaysia
                 
                Diserahkan: 27 Mac 2018/Diterima: 20 Jun 2018
                 
                ABSTRACT
                Adequate 
                  development of uterine receptivity is crucial for establishment 
                  of pregnancy. Expression of uterine receptivity molecules i.e. 
                  αvβ3 integrin, E-cadherin and mucin-1 could be affected 
                  by testosterone. The objective of this study was to investigate 
                  effect of testosterone on expression of these molecules during 
                  early pregnancy. 30 ovariectomised 
                  female Sprague-Dawley rats were divided into 5 groups that consisted 
                  of vehicle control, rats received eight days sex-steroid replacement 
                  regime (intended to mimic the hormonal changes in early pregnancy) 
                  and three groups of rats given testosterone (1 mg/kg/day) subcutaneously 
                  with or without flutamide or finasteride 
                  between day 6 and 8 representing the period of uterine receptivity. 
                  At the end of the treatment, rats were sacrificed and uteri 
                  were removed. Expression and distribution of αvβ3 
                  integrin, E-cadherin and mucin-1 were examined by immunoflourescence 
                  and levels of messenger RNA (mRNAs) were evaluated by real-time 
                  PCR. Expression of αvβ3 integrin, E-cadherin and mucin-1 
                  in the uteri of rats receiving sex-steroid replacement regime 
                  increased significantly as compared to control (p<0.05). In these rats, concomitant administration of testosterone between 
                  day 6 and 8 resulted in expression of αvβ3 integrin, 
                  E-cadherin and mucin-1 to decrease significantly (p<0.05) 
                  as compared to rats receiving sex-steroid replacement regime 
                  without testosterone treatment. Moreover, the testosterone effects 
                  were not antagonized by either flutamide 
                  or finasteride. As a result, reduced expression of uterine receptivity 
                  molecules by testosterone might interfere with early pregnancy 
                  establishment, therefore could adversely affect the female fertility.
                Keywords: αvβ3 integrin; 
                  E-cadherin; mucin-1; testosterone; uterine receptivity
                ABSTRAK
                Perkembangan yang mencukupi 
                  bagi reseptif rahim adalah penting 
                  untuk membolehkan 
                  kehamilan berlaku. 
                  Pengekspresan molekul reseptif rahim 
                  seperti αvβ3 integrin, E-cadherin 
                  dan mucin-1 boleh dipengaruhi oleh testosteron. Objektif kajian ini adalah 
                  untuk mengkaji 
                  kesan testosteron terhadap pengekspresan molekul ini semasa 
                  peringkat awal 
                  kehamilan. 30 ekor tikus Sprague-Dawley yang telah 
                  diovariektomi dibahagikan kepada 5 kumpulan terdiri daripada kumpulan kawalan, kumpulan tikus yang menerima regim penggantian steroid seks selama lapan hari 
                  (bertujuan untuk 
                  meniru perubahan hormon semasa peringkat 
                  awal kehamilan) 
                  dan tiga kumpulan 
                  tikus yang diberikan 
                  rawatan testosteron (1 mg/kg/hari) secara subkulitan 
                  dengan atau 
                  tanpa kehadiran flutamide atau finasteride antara hari ke-6 hingga ke-8 rawatan yang mewakili tempoh reseptif 
                  rahim. Di akhir rawatan, 
                  tikus telah 
                  dikorbankan dan uteri dikeluarkan. Pengekspresan dan taburan αvβ3 
                  integrin, E-cadherin dan mucin-1 ditentukan dengan menggunakan immunoflourescence dan paras mRNA ditentukan dengan menggunakan Real-time PCR. 
                  Pengekspresan αvβ3 integrin, E-cadherin dan 
                  mucin-1 dalam uteri tikus 
                  yang menerima regim 
                  penggantian steroid seks didapati meningkat secara signifikan berbanding kawalan (p<0.05). Pada tikus 
                  ini, pemberian 
                  bersama testosteron antara hari ke-6 hingga hari ke-8 telah menyebabkan pengekspresan αvβ3 integrin, E-cadherin dan mucin-1 menurun dengan signifikan (p<0.05) berbanding 
                  kumpulan yang menerima 
                  regim penggantian steroid seks tanpa rawatan 
                  testosteron. Selain itu, 
                  kesan testosteron 
                  ini tidak ditentang 
                  oleh flutamide 
                  atau finasteride. Kesimpulannya, penurunan 
                  pengekspresan molekul 
                  reseptif rahim 
                  oleh testosteron mungkin mengganggu perkembangan awal kehamilan dan seterusnya 
                  boleh menjejaskan 
                  kesuburan wanita.
                Kata kunci: 
                  αvβ3 integrin; E-cadherin; mucin-1; reseptif 
                  rahim; testosterone
                RUJUKAN
                Achache, H. & Revel, A. 2006. Endometrial 
                  receptivity markers, the journey to successful embryo implantation. 
                  Hum. Reprod. Update 12(6): 
                  731-46. 
                Aplin, J.D. 2000. The cell biological 
                  basis of human implantation. Baillieres Best Pract. Res. Clin. 
                  Obstet. Gynaecol. 14(5): 757-764. 
                  
                Aplin, J.D., Hey, N.A. & Graham, R.A. 1998. Human endometrial MUC1 carries 
                  keratan sulfate: Characteristic glycoforms 
                  in the luminal epithelium at receptivity. Glycobiology 
                  8(3): 269-276. 
                Apparao, K., Lovely, L.P., Gui, Y., Lininger, R.A. & Lessey, B.A. 2002. Elevated endometrial 
                  androgen receptor expression in women with polycystic ovarian 
                  syndrome. Biology of Reproduction 66(2): 297-304. 
                  
                Apparao, K.B., Murray, M.J., Fritz, M.A., Meyer, 
                  W.R., Chambers, A.F., Truong, P.R. & Lessey, 
                  B.A. 2001. 
                  Osteopontin and its receptor alphavbeta(3) integrin are 
                  coexpressed in the human endometrium during the menstrual 
                  cycle but regulated differentially. J. Clin. 
                  Endocrinol. 
                  Metab. 
                  86(10): 4991-5000. 
                Brayman, M., Thathiah, 
                  A. & Carson, D.D. 2004. MUC1: A multifunctional cell surface component of reproductive 
                  tissue epithelia. Reprod. 
                  Biol. Endocrinol. 2: 
                  4. 
                Carson, D.D., 
                  Bagchi, I., Dey, 
                  S.K., Enders, A.C., Fazleabas, A.T., 
                  Lessey, B.A. & Yoshinaga, 
                  K. 2000. Embryo implantation. 
                  Dev. Biol. 223(2): 217-237. 
                Davison, S., Bell, R., Donath, 
                  S., Montalto, J. & Davis, S. 2005. 
                  Androgen levels in adult females: Changes with age, menopause, 
                  and oophorectomy. The Journal of Clinical Endocrinology & 
                  Metabolism 90(7): 3847-3853. 
                Dehghan, F.M.S., Yusof, 
                  A. & Salleh, N. 2014. Sex-Steroid 
                  regulation of relaxin receptor isoforms 
                  (rxfp1 & rxfp2) expression in the patellar tendon and 
                  lateral collateral ligament of female wky 
                  rats. Int. J. Med. Sci. 11(2): 180-191. 
                DeSouza, M.M., Mani, S.K., Julian, J. & Carson, 
                  D.D. 1998. Reduction of mucin-1 expression during the receptive 
                  phase in the rat uterus. Biol. Reprod. 58(6): 1503-1507. 
                Giudice, L.C. 1999. Potential 
                  biochemical markers of uterine receptivity. Human 
                  Reproduction 14(2): 3-16. 
                Gonzalez, D., 
                  Thackeray, H., Lewis, P., Mantani, 
                  A., Brook, N., Ahuja, K., Margara, 
                  R., Joels, L., White, J. & Conlan, 
                  R. 2012. Loss of WT1 expression in the 
                  endometrium of infertile 2408 
                PCOS patients: A hyperandrogenic effect? The Journal of Clinical Endocrinology 
                  & Metabolism 97(3): 957-966. 
                Horne, A.W., 
                  White, J.O., Lalani el., N., Mobberley, 
                  M.A., Margara, R.A., Trew, 
                  G.H. & Ryder, T.A. 2002. Analysis of epitopes on endometrial epithelium 
                  by scanning immunoelectron microscopy. 
                  Biochem. Biophys. Res. Commun. 292(1): 102-108. 
                  
                Jha, R.K., Titus, S., Saxena, D., Kumar, P.G. & Laloraya, 
                  M. 2006. Profiling of E-cadherin, beta-catenin and Ca(2+) 
                  in embryo-uterine interactions at implantation. FEBS. 
                  Lett. 580(24): 5653-5660. 
                Johansson, J. 
                  & Stener-Victorin, E. 2013. Polycystic ovary syndrome: Effect 
                  and mechanisms of acupuncture for ovulation induction. Evidence-Based 
                  Complementary and Alternative Medicine 2013: Article ID. 
                  762615. 
                Kennedy, T.G. 1986. Intrauterine 
                  infusion of prostaglandins and decidualization 
                  in rats with uteri differentially sensitized for the decidual 
                  cell reaction. Biology of Reproduction 34(2): 327-335. 
                  
                Kowalski, P.J., 
                  Rubin, M.A. & Kleer, C.G. 2003. E-cadherin 
                  expression in primary carcinomas of the breast and its distant 
                  metastases. Breast Cancer Res. 5(6): R217-R222. 
                  
                Lessey, B.A. 2003. Two pathways of progesterone 
                  action in the human endometrium: Implications for implantation 
                  and contraception. Steroids 68(10-13): 809-815. 
                Lessey, B.A. 1998. Endometrial 
                  integrins and the establishment of uterine receptivity. 
                  Hum. Reprod. 13(Suppl 
                  3): 247-258; discussion 259-261. 
                Lessey, B.A., Castelbaum, 
                  A.J., Buck, C.A., Lei, Y., Yowell, 
                  C.W. & Sun, J. 1994. 
                  Further characterization of endometrial integrins 
                  during the menstrual cycle and in pregnancy. Fertil. Steril. 
                  62(3): 497-506. 
                Li, Q., Wang, 
                  J., Armant, D.R., Bagchi, 
                  M.K. & Bagchi, I.C. 2002. Calcitonin down-regulates E-cadherin 
                  expression in rodent uterine epithelium during implantation. 
                  J. Biol. Chem. 277(48): 46447-46455. 
                Liu, G., Zhang, X., Lin, H., Wang, 
                  H., Li, Q., Ni, J. & Zhu, C. 2006. Effects 
                  of E-cadherin on mouse embryo implantation and expression of 
                  matrix metalloproteinase-2 and-9. Biochemical And 
                  Biophysical Research Communications 343(3): 832-838. 
                Mohamad, N.V., 
                  Soelaiman, I.N. & Chin, K.Y. 2016. A concise review 
                  of testosterone and bone health. Clin. Interv. 
                  Aging 11: 1317-1324. 
                Mohamed-Hussein, Z.A. & Harun, 
                  S. 2009. Construction of a polycystic ovarian syndrome (PCOS) 
                  pathway based on the interactions of PCOS-related proteins retrieved 
                  from bibliomic data. Theor. Biol. Med. Model. 6: 18. 
                Mohd Mokhtar, 
                  H., Giribabu, N., Kassim, 
                  N., Muniandy, S. & Salleh, 
                  N. 2014. 
                  Testosterone decreases fluid and chloride secretions in the 
                  uterus of adult female rats via down-regulating cystic fibrosis 
                  transmembrane regulator (CFTR) expression and functional activity. 
                  J. Steroid Biochem. Mol. Biol. 
                  144 Pt B: 361-372. 
                Mokhtar, H.M., 
                  Giribabu, N., Muniandy, 
                  S. & Salleh, N. 2014. Testosterone decreases the expression 
                  of endometrial pinopode and L-selectin 
                  ligand (MECA-79) in adult female rats during uterine receptivity 
                  period. Int. J. Clin. Exp. Pathol. 
                  7(5): 1967-1976. 
                Nur Vaizura, M., Soelaiman, I.N. & Kok-Yong, 
                  C. 2018. 
                  A review on the effects of testosterone supplementation in hypogonadal men with cognitive impairment. Current 
                  Drug Targets 19(8): 898-906. 
                Nurismah, M.I., Noriah, 
                  O., Suryati, M.Y. & Sharifah, 
                  N.A. 2008. E-cadherin expression correlates 
                  with histologic type but not tumour 
                  grade in invasive breast cancer. Asian Pac. J. Cancer Prev. 
                  9(4): 699-702. 
                Paulson, R.J. 
                  2011. 
                  Hormonal induction of endometrial receptivity. Fertil. 
                  Steril. 
                  96(3): 530-535. 
                Perusquía, M., García-Yañez, 
                  E., Ibáñez, R. & Kubli-Garfias, 
                  C. 1990. Non-genomic 
                  mechanism of action of Δ-4 and 5-reduced androgens and 
                  progestins on the contractility of 
                  the isolated rat myometrium. Life Sciences 47(17): 
                  1547-1553. 
                Reddy, V.R., 
                  Gupta, S.M. & Meherji, P.K. 2001. Expression of integrin receptors 
                  on peripheral lymphocytes: Correlation with endometrial receptivity. 
                  Am. J. Reprod. Immunol. 46(3): 188-195. 
                Salleh, N., Baines, D.L., Naftalin, 
                  R.J. & Milligan, S.R. 2005. The hormonal control of uterine luminal 
                  fluid secretion and absorption. J. Membr. 
                  Biol. 206(1): 17-28. 
                Shafiee, M.N., Chapman, C., Barrett, D., Abu, J. 
                  & Atiomo, W. 2013. Reviewing the molecular mechanisms which 
                  increase endometrial cancer (EC) risk in women with polycystic 
                  ovarian syndrome (PCOS): Time for paradigm shift? Gynecologic 
                  Oncology 131(2): 489-492. 
                Simon, C., Martin, 
                  J.C. & Pellicer, A. 2000. Paracrine regulators 
                  of implantation. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14(5): 
                  815-826. 
                Slater, M., 
                  Murphy, C.R. & Barden, J.A. 2002. Tenascin, E-cadherin and P2X calcium channel 
                  receptor expression is increased during rat blastocyst implantation. 
                  Histochem. 
                  J. 34(1-2): 13-19. 
                Srinivasan, K.R., Blesson, C.S., Fatima, I., Kitchlu, 
                  S., Jain, S.K., Mehrotra, P.K. & 
                  Dwivedi, A. 2009. Expression of alphaVbeta3 
                  integrin in rat endometrial epithelial cells and its functional 
                  role during implantation. Gen. Comp. Endocrinol. 
                  160(2): 124-133. 
                Thomas, K., Thomson, A.J., Sephton, V., Cowan, C., Wood, S., Vince, G., Kingsland, C.R. 
                  & Lewis-Jones, D.I. 2002. The effect of 
                  gonadotrophic stimulation on integrin expression in the endometrium. 
                  Hum. Reprod. 17(1): 63-68. 
                  
                Tsai, Y.L., 
                  Wang, H.T.T., Chang, H.F.G., Tsai, C.F., Lin, C.K., Teng, 
                  P.H., Su, C., Jeng, C.C. & Lee, 
                  P.Y. 2012. Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. 
                  PloS One 7(9): 
                  e45278. 
                Wang, H. & 
                  Dey, S.K. 2006. Roadmap to embryo implantation: Clues from 
                  mouse models. Nature Reviews. Genetics 7(3): 185-199. 
                  
                Yan, L., Wang, A., Chen, L., Shang, 
                  W., Li, M. & Zhao, Y. 2012. Expression 
                  of apoptosis-related genes in the endometrium of polycystic 
                  ovary syndrome patients during the window of implantation. 
                  Gene 506(2): 350-354. 
                Yoshida-Noro, 
                  C., Suzuki, N. & Takeichi, M. 
                  1984. Molecular nature of the calcium-dependent 
                  cell-cell adhesion system in mouse teratocarcinoma 
                  and embryonic cells studied with a monoclonal antibody. Dev. 
                  Biol. 101(1): 19-27. 
                 
                *Pengarang untuk 
                  surat-menyurat; email: naguib.salleh@gmail.com