Sains Malaysiana 47(10)(2018): 2557–2563

http://dx.doi.org/10.17576/jsm-2018-4710-32

 

Evaluating Physical and Biological Characteristics of Glutaraldehyde (GA)Cross-Linked Nano-Biocomposite Bone Scaffold

(Penilaian Pencirian Fizikal dan Biologi Perancah Tulang Nano Biokomposit Dipindah Silang dengan Glutaraldehid (GA))

 

HEMABARATHY BHARATHAM*, SITI FATHIAH MASRE, LEO HWEE XIEN & NURNADIAH AHMAD

 

Program of Biomedical Science, School of Diagnostic and Applied Health Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 28 Februari 2018/Diterima: 28 Jun 2018

 

ABSTRACT

In vivo stability of biomaterial-based bone scaffolds often present a significant drawback in the development of materials for tissue engineering purpose. Previously developed nanobiocomposite bone scaffold using alginate and nano cockle shell powder has shown ideal characteristics. However, it showed high degradation rate and reduced stability in an in vivo setting. In this study, we aim to observe the effect of cross-linking glutaraldehyde (GA) in three different concentrations of 0.5%, 1% and 2% during the fabrication process as a potential factor in increasing scaffold stability. Microstructure observations of scaffolds using scanning electron microscope (SEM) showed all scaffolds crossed linked with GA and control had an ideal pore size ranging from 166.8-203.5 μm. Increase in porosity compared to the control scaffolds was observed in scaffolds cross-linked with 2% GA which also presented better structural integrity as scored through semi-quantitative methods. Tested pH values during the degradation period showed that scaffolds from all groups remained within the range of 7.73-8.76. In vitro studies using osteoblast showed no significant changes in cell viability but a significant increase in ALP enzyme levels in scaffold cross-linked with 2% GA. The calcium content released from all scaffold showed significant differences within and between the groups. It can be concluded that the use of GA in the preparation stage of the scaffold did not affect the growth and proliferation of osteoblast and use of 2% GA showed improved scaffold structural integrity and porosity.

 

Keywords: Bone scaffold; glutaraldehyde; nanobiocomposite; osteoblast

 

ABSTRAK

Kestabilan in vivo perancah tulang berasas biobahan merupakan salah satu kelemahan yang ketara dalam fabrikasi bahan untuk tujuan kejuruteraan tisu. Perancah tulang nanobiokomposit yang telah dibangunkan terlebih dahulu menggunakan alginat dan serbuk nano cengkerang kerang menunjukkan ciri-ciri ideal sebagai bahan pengganti tulang. Walau bagaimanapun, perancah tersebut menunjukkan kadar degradasi yang tinggi dan pengurangan dalam kestabilan struktur dalam keadaan in vivo. Kajian ini bertujuan untuk memperhatikan kesan penggunaan glutaraldehid (GA) sebagai bahan pindah silang dalam kepekatan 0.5%, 1% dan 2% terhadap perancah yang dibentuk. Kajian mikrostruktur menggunakan mikroskopi elektron imbasan (SEM) menunjukkan kesemua perancah tulang kajian GA dan kawalan mempunyai saiz liang antara 166.8-203.5 μm yang bersesuaian untuk tujuan penggunaan. Peningkatan keliangan berbanding perancah kawalan diperhatikan untuk perancah yang dipindah silang dengan 2% GA yang turut menunjukkan peningkatan dalam kestabilan struktur melalui kaedah pemarkahan semi kuantitatif. Nilai pH yang diukur sepanjang tempoh kajian degradasi menunjukkan julat pH berada antara 7.73-8.76 untuk semua kumpulan kajian dan kawalan. Kajian in vitro menggunakan osteoblas tidak menunjukkan sebarang perubahan signifikan kepada keviabelansel tetapi terdapat peningkatan dalam aktiviti enzim ALP untuk perancah yang dipindah silang dengan 2% GA. Perbezaan signifikan pembebasan kalsium juga diperhatikan antara dan dalam semua kumpulan kajian dan kawalan. Secara keseluruhan, didapati penggunaan GA dalam pembentukan perancah tidak memberikan kesan terhadap percambahan dan pertumbuhan osteoblas pada perancah tulang dan peningkatan dalam integriti struktur dan keliangan perancah diperhatikan dengan penggunaan GA pada kepekatan 2%.

 

Kata kunci: Glutaraldehid; nanobiokomposit; osteoblas; perancah tulang

 

RUJUKAN

Abu, Z., Baha, F. & Mohamed, N. 2011. Cockle shell-based biocomposite scaffold for bone tissue engineering. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 17: 364-390.

Azami, M., Rabiee, M. & Moztarzadeh, F. 2010. Glutaraldehyde crosslinked gelatin/hydroxyapatite nanocomposite scaffold, engineered via compound techniques. Polymer Composites 31(12): 2112-2120.

Bharatham, H., Bakar, M.Z.A., Perimal, E.K., Yusof, L.M. & Hamid, M. 2014. Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. BioMed. Research International 2014: 146723.

Bose, S., Roy, M. & Bandyopadhyay, A. 2012. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology 30(10): 546-554.

Cheung, H.Y., Lau, K.T., Lu, T.P. & Hui, D. 2007. A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering 38(3): 291-300.

Gabrielle, F., Justin, B. & Abby, M. 2010. Ovalbumin- based porous scafffolds for bone tissue regeneration. Journal of Tissue Engineering 2010: 209860.

Golub, E.E. 2009. Role of matrix vesicles in biomineralization. Biochimica et Biophysica Acta 1790(12): 1592-1598.

Gurumurthy, B., Bierdeman, P.C. & Janorkar, A.V. 2016. Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dental Materials: Official Publication Of The Academy Of Dental Materials 32(10): 1270-1280.

Haugh, M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, C. & O’Brien, F.J. 2011. Cross-linking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Engineering: Part A 00(00): 1-8.

Hemabarathy, B., Zariyantey, A.H., Muhammad, F.M., Nurnadiah, A. & Enoch, E.K. 2017. Perbandingan antara perancah tulang nanobiokomposit alginat/kulit kerang dan alginat/kalsium karbonat terhadap pertumbuhan osteoblas. Jurnal Sains Kesihatan Malaysia 15(2): 1-7.

Hemabarathy, B., Zuki, A.B.Z., Enoch, K.P., Loqman, M.Y. & Muhajir, H. 2014. Mineral and physiochemical evaluation of cockle shell (Anadara granosa) and other selected molluscan shell as potential biomaterials. Sains Malaysiana 43(7): 1023-1029.

Hoffmann, B., Seitz, D., Mencke, A., Kokott, A. & Ziegler, G. 2009. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. Journal of Materials Science. Materials in Medicine 20(7): 1495-1503.

Kamba, A.S. & Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal. BioMed Research International 2014: 215097.

Kohn, D.H., Sarmadi, M., Helman, J.I. & Krebsbach, P.H. 2000. Effects of pH on human bone marrow stromal cells in vitro: Implications for tissue engineering of bone. J. Biomed. Mater. Res. 60: 292-299.

Lee, K.Y. & Mooney, D.J. 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37(1): 106-126.

Ma, L., Mao, Z. & Han, C. 2003. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26): 4833-4841.

Mehdi, K.N., Mehran, S.H. & Mohammad, P. 2006. Fabrication of porous hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde for bone tissue engineering. Iranian Journal of Biotechnology 4(1): 54-60.

Nurnadiah, A., Hemabarathy, B., Zariyantey, A.H. & Zulaikha, Z. 2017. Cytotoxicity and oxidative stress evaluation of alginate/ cockle shell powder nanobiocomposite bone scaffold on osteoblast. Jurnal Sains Kesihatan Malaysia 15(1): 97-103.

O’Brien, F.J. 2011. Biomaterials & scaffolds for tissue engineering. Materials Today 14(3): 88-95.

Perez, V.P., Romero, A. & Guerrero, A. 2016. Influence of collegen concentraion and glutaraldehyde on collegen based scaffold properties. Journal of Biomedical Material Research 104(6): 1462-1468.

Shea, L.D., Wang, D., Franceschi, R.T. & Mooney, D.J. 2000. Engineered bone development from a pre-osteoblast cell. Tissue Engineering 6(6): 605-617.

Sheu, M.T., Huang, J.C., Yeh, G.C. & Ho, H.O. 2001. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 22(13): 1713-1719.

Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. & Cheng, L. 2007. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28: 3338-3348.

Yang, Y., Alastair, C.R. & Nicole, M.E. 2017. Comparison of glutaraldehyde and procyanidin cross-linked scaffolds for soft tissue engineering. Material Sciences and Engineering C 89: 263-273.

Zhang, Y. & Zhang, M. 2000. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 55: 304-312.

Zuki, A.B., Bahaa, F.H. & Noordin, M.M. 2011. Cockle shell-based biocomposite scaffold  for  bone  tissue  engineering. Regenerative  Medicine  and  Tissue Engineering 11: 365-390. 

 

*Pengarang untuk surat-menyurat; email: hema@ukm.edu.my

 

 

 

 

 

 

 

 

 

sebelumnya