Sains Malaysiana 47(10)(2018):
2557–2563
http://dx.doi.org/10.17576/jsm-2018-4710-32
Evaluating Physical and Biological Characteristics of Glutaraldehyde
(GA)Cross-Linked Nano-Biocomposite
Bone Scaffold
(Penilaian Pencirian
Fizikal dan
Biologi Perancah Tulang Nano Biokomposit Dipindah Silang dengan Glutaraldehid (GA))
HEMABARATHY
BHARATHAM*,
SITI
FATHIAH
MASRE,
LEO
HWEE
XIEN
& NURNADIAH AHMAD
Program
of Biomedical Science, School of Diagnostic and Applied Health
Science, Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, Jalan
Raja Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 28
Februari 2018/Diterima: 28 Jun 2018
ABSTRACT
In vivo stability of biomaterial-based
bone scaffolds often present a significant
drawback in the development of materials for tissue engineering
purpose. Previously developed nanobiocomposite
bone scaffold using alginate and nano
cockle shell powder has shown ideal characteristics. However,
it showed high degradation rate and reduced stability in an
in vivo setting. In this study, we aim to observe the
effect of cross-linking glutaraldehyde (GA)
in three different concentrations of 0.5%, 1% and 2% during
the fabrication process as a potential factor in increasing
scaffold stability. Microstructure observations of scaffolds
using scanning electron microscope (SEM)
showed all scaffolds crossed linked with GA and control had an ideal pore
size ranging from 166.8-203.5 μm.
Increase in porosity compared to the control scaffolds was observed
in scaffolds cross-linked with 2% GA which also presented better structural
integrity as scored through semi-quantitative methods. Tested
pH values during the degradation period showed that scaffolds
from all groups remained within the range of 7.73-8.76. In
vitro studies using osteoblast showed no significant changes
in cell viability but a significant increase in ALP enzyme levels in scaffold cross-linked with 2% GA.
The calcium content released from all scaffold showed significant
differences within and between the groups. It can be concluded
that the use of GA
in the preparation stage of the scaffold did not
affect the growth and proliferation of osteoblast and use of
2% GA showed
improved scaffold structural integrity and porosity.
Keywords: Bone scaffold;
glutaraldehyde; nanobiocomposite;
osteoblast
ABSTRAK
Kestabilan in vivo perancah
tulang berasas
biobahan merupakan salah satu kelemahan
yang ketara dalam
fabrikasi bahan untuk tujuan kejuruteraan
tisu. Perancah tulang nanobiokomposit yang telah dibangunkan terlebih dahulu menggunakan alginat dan serbuk nano
cengkerang kerang
menunjukkan ciri-ciri ideal sebagai bahan pengganti
tulang. Walau
bagaimanapun, perancah tersebut menunjukkan kadar degradasi
yang tinggi dan
pengurangan dalam kestabilan
struktur
dalam keadaan in vivo. Kajian ini
bertujuan untuk
memperhatikan kesan penggunaan glutaraldehid (GA)
sebagai bahan
pindah silang dalam
kepekatan 0.5%, 1% dan
2% terhadap perancah yang dibentuk. Kajian mikrostruktur menggunakan mikroskopi elektron imbasan (SEM) menunjukkan
kesemua perancah
tulang kajian GA dan kawalan mempunyai
saiz liang
antara 166.8-203.5 μm
yang bersesuaian untuk
tujuan penggunaan. Peningkatan keliangan berbanding perancah kawalan diperhatikan untuk perancah yang dipindah silang dengan 2% GA yang
turut menunjukkan
peningkatan dalam kestabilan struktur melalui kaedah pemarkahan semi kuantitatif.
Nilai
pH yang diukur sepanjang
tempoh kajian degradasi
menunjukkan julat
pH berada antara 7.73-8.76 untuk semua kumpulan
kajian dan
kawalan. Kajian in vitro
menggunakan osteoblas
tidak menunjukkan
sebarang perubahan signifikan kepada keviabelansel
tetapi terdapat
peningkatan dalam aktiviti enzim ALP untuk perancah yang dipindah silang dengan 2% GA.
Perbezaan signifikan pembebasan kalsium juga diperhatikan antara dan dalam semua
kumpulan kajian
dan kawalan. Secara keseluruhan,
didapati penggunaan
GA
dalam pembentukan perancah tidak memberikan kesan terhadap percambahan dan pertumbuhan osteoblas pada perancah tulang dan peningkatan dalam integriti struktur dan keliangan
perancah diperhatikan
dengan penggunaan GA pada kepekatan 2%.
Kata kunci: Glutaraldehid;
nanobiokomposit; osteoblas;
perancah tulang
RUJUKAN
Abu,
Z., Baha, F. & Mohamed, N. 2011.
Cockle shell-based biocomposite
scaffold for bone tissue engineering. Regenerative
Medicine and Tissue Engineering - Cells and Biomaterials 17:
364-390.
Azami,
M., Rabiee, M. & Moztarzadeh,
F. 2010. Glutaraldehyde crosslinked gelatin/hydroxyapatite
nanocomposite scaffold, engineered via compound techniques.
Polymer Composites 31(12): 2112-2120.
Bharatham,
H., Bakar, M.Z.A., Perimal, E.K.,
Yusof, L.M. & Hamid, M. 2014. Development and characterization of novel
porous 3D alginate-cockle shell powder nanobiocomposite
bone scaffold. BioMed. Research International 2014: 146723.
Bose,
S., Roy, M. & Bandyopadhyay, A.
2012. Recent
advances in bone tissue engineering scaffolds. Trends in
Biotechnology 30(10): 546-554.
Cheung,
H.Y., Lau, K.T., Lu, T.P. & Hui, D. 2007. A critical review on polymer-based bio-engineered materials for scaffold
development. Composites Part B: Engineering 38(3):
291-300.
Gabrielle,
F., Justin, B. & Abby, M. 2010. Ovalbumin- based
porous scafffolds for bone tissue
regeneration. Journal of Tissue Engineering 2010: 209860.
Golub,
E.E. 2009. Role of matrix vesicles in biomineralization.
Biochimica et
Biophysica Acta 1790(12): 1592-1598.
Gurumurthy,
B., Bierdeman, P.C. & Janorkar,
A.V. 2016. Composition of elastin like polypeptide-collagen composite
scaffold influences in vitro osteogenic activity of human
adipose derived stem cells. Dental Materials: Official Publication
Of The Academy Of Dental Materials 32(10): 1270-1280.
Haugh,
M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner,
C. & O’Brien, F.J. 2011. Cross-linking and mechanical properties
significantly influence cell attachment, proliferation, and
migration within collagen glycosaminoglycan scaffolds. Tissue
Engineering: Part A 00(00): 1-8.
Hemabarathy,
B., Zariyantey, A.H., Muhammad, F.M.,
Nurnadiah, A. & Enoch, E.K. 2017. Perbandingan antara perancah tulang nanobiokomposit alginat/kulit kerang
dan alginat/kalsium karbonat terhadap pertumbuhan osteoblas. Jurnal
Sains Kesihatan
Malaysia 15(2): 1-7.
Hemabarathy,
B., Zuki, A.B.Z., Enoch, K.P., Loqman,
M.Y. & Muhajir, H. 2014. Mineral
and physiochemical evaluation of cockle shell (Anadara
granosa) and other selected molluscan
shell as potential biomaterials. Sains
Malaysiana 43(7): 1023-1029.
Hoffmann,
B., Seitz, D., Mencke, A., Kokott,
A. & Ziegler, G. 2009. Glutaraldehyde and oxidised dextran as crosslinker
reagents for chitosan-based scaffolds for cartilage tissue engineering.
Journal of Materials Science. Materials in Medicine
20(7): 1495-1503.
Kamba,
A.S. & Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour on bio-based
calcium carbonate aragonite nanocrystal. BioMed
Research International 2014: 215097.
Kohn,
D.H., Sarmadi, M., Helman,
J.I. & Krebsbach, P.H. 2000. Effects
of pH on human bone marrow stromal cells in vitro: Implications
for tissue engineering of bone. J. Biomed. Mater.
Res. 60: 292-299.
Lee,
K.Y. & Mooney, D.J. 2012. Alginate: Properties and biomedical
applications. Progress in Polymer Science 37(1): 106-126.
Ma,
L., Mao, Z. & Han, C. 2003. Collagen/chitosan porous scaffolds
with improved biostability for skin
tissue engineering. Biomaterials 24(26): 4833-4841.
Mehdi,
K.N., Mehran, S.H. & Mohammad, P. 2006. Fabrication of porous
hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde
for bone tissue engineering. Iranian Journal of Biotechnology
4(1): 54-60.
Nurnadiah,
A., Hemabarathy, B., Zariyantey,
A.H. & Zulaikha, Z. 2017. Cytotoxicity
and oxidative stress evaluation of alginate/ cockle shell powder
nanobiocomposite bone scaffold on osteoblast. Jurnal Sains Kesihatan Malaysia 15(1): 97-103.
O’Brien,
F.J. 2011. Biomaterials & scaffolds for tissue engineering.
Materials Today 14(3): 88-95.
Perez,
V.P., Romero, A. & Guerrero, A. 2016. Influence of collegen concentraion and glutaraldehyde
on collegen based scaffold properties.
Journal of Biomedical Material Research 104(6): 1462-1468.
Shea,
L.D., Wang, D., Franceschi, R.T. &
Mooney, D.J. 2000.
Engineered bone development from a pre-osteoblast cell. Tissue
Engineering 6(6): 605-617.
Sheu,
M.T., Huang, J.C., Yeh, G.C. &
Ho, H.O. 2001. Characterization of collagen gel solutions and collagen matrices for
cell culture. Biomaterials 22(13): 1713-1719.
Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. &
Cheng, L. 2007. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide
composite scaffolds for bone tissue engineering. Biomaterials
28: 3338-3348.
Yang,
Y., Alastair, C.R. & Nicole, M.E. 2017. Comparison of
glutaraldehyde and procyanidin cross-linked
scaffolds for soft tissue engineering. Material
Sciences and Engineering C 89: 263-273.
Zhang, Y. & Zhang, M. 2000. Synthesis and characterization of macroporous
chitosan/calcium phosphate composite scaffolds for tissue engineering.
J. Biomed. Mater. Res. 55: 304-312.
Zuki, A.B., Bahaa, F.H. & Noordin,
M.M. 2011. Cockle shell-based biocomposite scaffold for bone tissue engineering. Regenerative Medicine and Tissue Engineering 11:
365-390.
*Pengarang
untuk surat-menyurat;
email: hema@ukm.edu.my