Sains Malaysiana 47(10)(2018): 
                  2557–2563 
                http://dx.doi.org/10.17576/jsm-2018-4710-32 
                  
                 
                Evaluating Physical and Biological Characteristics of Glutaraldehyde 
                  (GA)Cross-Linked Nano-Biocomposite 
                  Bone Scaffold
                (Penilaian Pencirian 
                  Fizikal dan 
                  Biologi Perancah Tulang Nano Biokomposit Dipindah Silang dengan Glutaraldehid (GA)) 
                 
                HEMABARATHY 
                  BHARATHAM*, 
                  SITI 
                  FATHIAH 
                  MASRE, 
                  LEO 
                  HWEE 
                  XIEN 
                  & NURNADIAH AHMAD
                 
                Program 
                  of Biomedical Science, School of Diagnostic and Applied Health 
                  Science, Faculty of Health Sciences, Universiti 
                  Kebangsaan Malaysia, Jalan 
                  Raja Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
                 
                Diserahkan: 28 
                  Februari 2018/Diterima: 28 Jun 2018
                 
                ABSTRACT
                In vivo stability of biomaterial-based 
                  bone scaffolds often present a significant 
                  drawback in the development of materials for tissue engineering 
                  purpose. Previously developed nanobiocomposite 
                  bone scaffold using alginate and nano 
                  cockle shell powder has shown ideal characteristics. However, 
                  it showed high degradation rate and reduced stability in an 
                  in vivo setting. In this study, we aim to observe the 
                  effect of cross-linking glutaraldehyde (GA) 
                  in three different concentrations of 0.5%, 1% and 2% during 
                  the fabrication process as a potential factor in increasing 
                  scaffold stability. Microstructure observations of scaffolds 
                  using scanning electron microscope (SEM) 
                  showed all scaffolds crossed linked with GA and control had an ideal pore 
                  size ranging from 166.8-203.5 μm. 
                  Increase in porosity compared to the control scaffolds was observed 
                  in scaffolds cross-linked with 2% GA which also presented better structural 
                  integrity as scored through semi-quantitative methods. Tested 
                  pH values during the degradation period showed that scaffolds 
                  from all groups remained within the range of 7.73-8.76. In 
                  vitro studies using osteoblast showed no significant changes 
                  in cell viability but a significant increase in ALP enzyme levels in scaffold cross-linked with 2% GA. 
                  The calcium content released from all scaffold showed significant 
                  differences within and between the groups. It can be concluded 
                  that the use of GA 
                  in the preparation stage of the scaffold did not 
                  affect the growth and proliferation of osteoblast and use of 
                  2% GA showed 
                  improved scaffold structural integrity and porosity.
                 
                Keywords: Bone scaffold; 
                  glutaraldehyde; nanobiocomposite; 
                  osteoblast
                 
                ABSTRAK
                Kestabilan in vivo perancah 
                  tulang berasas 
                  biobahan merupakan salah satu kelemahan 
                  yang ketara dalam 
                  fabrikasi bahan untuk tujuan kejuruteraan 
                  tisu. Perancah tulang nanobiokomposit yang telah dibangunkan terlebih dahulu menggunakan alginat dan serbuk nano 
                  cengkerang kerang 
                  menunjukkan ciri-ciri ideal sebagai bahan pengganti 
                  tulang. Walau 
                  bagaimanapun, perancah tersebut menunjukkan kadar degradasi 
                  yang tinggi dan 
                  pengurangan dalam kestabilan 
                  struktur 
                  dalam keadaan in vivo. Kajian ini 
                  bertujuan untuk 
                  memperhatikan kesan penggunaan glutaraldehid (GA) 
                  sebagai bahan 
                  pindah silang dalam 
                  kepekatan 0.5%, 1% dan 
                  2% terhadap perancah yang dibentuk. Kajian mikrostruktur menggunakan mikroskopi elektron imbasan (SEM) menunjukkan 
                  kesemua perancah 
                  tulang kajian GA dan kawalan mempunyai 
                  saiz liang 
                  antara 166.8-203.5 μm 
                  yang bersesuaian untuk 
                  tujuan penggunaan. Peningkatan keliangan berbanding perancah kawalan diperhatikan untuk perancah yang dipindah silang dengan 2% GA yang 
                  turut menunjukkan 
                  peningkatan dalam kestabilan struktur melalui kaedah pemarkahan semi kuantitatif. 
                  Nilai 
                  pH yang diukur sepanjang 
                  tempoh kajian degradasi 
                  menunjukkan julat 
                  pH berada antara 7.73-8.76 untuk semua kumpulan 
                  kajian dan 
                  kawalan. Kajian in vitro 
                  menggunakan osteoblas 
                  tidak menunjukkan 
                  sebarang perubahan signifikan kepada keviabelansel 
                  tetapi terdapat 
                  peningkatan dalam aktiviti enzim ALP untuk perancah yang dipindah silang dengan 2% GA. 
                  Perbezaan signifikan pembebasan kalsium juga diperhatikan antara dan dalam semua 
                  kumpulan kajian 
                  dan kawalan. Secara keseluruhan, 
                  didapati penggunaan 
                  GA 
                  dalam pembentukan perancah tidak memberikan kesan terhadap percambahan dan pertumbuhan osteoblas pada perancah tulang dan peningkatan dalam integriti struktur dan keliangan 
                  perancah diperhatikan 
                  dengan penggunaan GA pada kepekatan 2%. 
                 
                Kata kunci: Glutaraldehid; 
                  nanobiokomposit; osteoblas; 
                  perancah tulang
                 
                RUJUKAN
                Abu, 
                  Z., Baha, F. & Mohamed, N. 2011. 
                  Cockle shell-based biocomposite 
                  scaffold for bone tissue engineering. Regenerative 
                  Medicine and Tissue Engineering - Cells and Biomaterials 17: 
                  364-390. 
                Azami, 
                  M., Rabiee, M. & Moztarzadeh, 
                  F. 2010. Glutaraldehyde crosslinked gelatin/hydroxyapatite 
                  nanocomposite scaffold, engineered via compound techniques. 
                  Polymer Composites 31(12): 2112-2120. 
                Bharatham, 
                  H., Bakar, M.Z.A., Perimal, E.K., 
                  Yusof, L.M. & Hamid, M. 2014. Development and characterization of novel 
                  porous 3D alginate-cockle shell powder nanobiocomposite 
                  bone scaffold. BioMed. Research International 2014: 146723. 
                Bose, 
                  S., Roy, M. & Bandyopadhyay, A. 
                  2012. Recent 
                  advances in bone tissue engineering scaffolds. Trends in 
                  Biotechnology 30(10): 546-554. 
                Cheung, 
                  H.Y., Lau, K.T., Lu, T.P. & Hui, D. 2007. A critical review on polymer-based bio-engineered materials for scaffold 
                  development. Composites Part B: Engineering 38(3): 
                  291-300. 
                Gabrielle, 
                  F., Justin, B. & Abby, M. 2010. Ovalbumin- based 
                  porous scafffolds for bone tissue 
                  regeneration. Journal of Tissue Engineering 2010: 209860. 
                  
                Golub, 
                  E.E. 2009. Role of matrix vesicles in biomineralization. 
                  Biochimica et 
                  Biophysica Acta 1790(12): 1592-1598. 
                  
                Gurumurthy, 
                  B., Bierdeman, P.C. & Janorkar, 
                  A.V. 2016. Composition of elastin like polypeptide-collagen composite 
                  scaffold influences in vitro osteogenic activity of human 
                  adipose derived stem cells. Dental Materials: Official Publication 
                  Of The Academy Of Dental Materials 32(10): 1270-1280. 
                Haugh, 
                  M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, 
                  C. & O’Brien, F.J. 2011. Cross-linking and mechanical properties 
                  significantly influence cell attachment, proliferation, and 
                  migration within collagen glycosaminoglycan scaffolds. Tissue 
                  Engineering: Part A 00(00): 1-8. 
                Hemabarathy, 
                  B., Zariyantey, A.H., Muhammad, F.M., 
                  Nurnadiah, A. & Enoch, E.K. 2017. Perbandingan antara perancah tulang nanobiokomposit alginat/kulit kerang 
                  dan alginat/kalsium karbonat terhadap pertumbuhan osteoblas. Jurnal 
                  Sains Kesihatan 
                  Malaysia 15(2): 1-7. 
                Hemabarathy, 
                  B., Zuki, A.B.Z., Enoch, K.P., Loqman, 
                  M.Y. & Muhajir, H. 2014. Mineral 
                  and physiochemical evaluation of cockle shell (Anadara 
                  granosa) and other selected molluscan 
                  shell as potential biomaterials. Sains 
                  Malaysiana 43(7): 1023-1029. 
                Hoffmann, 
                  B., Seitz, D., Mencke, A., Kokott, 
                  A. & Ziegler, G. 2009. Glutaraldehyde and oxidised dextran as crosslinker 
                  reagents for chitosan-based scaffolds for cartilage tissue engineering. 
                  Journal of Materials Science. Materials in Medicine 
                  20(7): 1495-1503. 
                Kamba, 
                  A.S. & Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour on bio-based 
                  calcium carbonate aragonite nanocrystal. BioMed 
                  Research International 2014: 215097. 
                Kohn, 
                  D.H., Sarmadi, M., Helman, 
                  J.I. & Krebsbach, P.H. 2000. Effects 
                  of pH on human bone marrow stromal cells in vitro: Implications 
                  for tissue engineering of bone. J. Biomed. Mater. 
                  Res. 60: 292-299. 
                Lee, 
                  K.Y. & Mooney, D.J. 2012. Alginate: Properties and biomedical 
                  applications. Progress in Polymer Science 37(1): 106-126. 
                  
                Ma, 
                  L., Mao, Z. & Han, C. 2003. Collagen/chitosan porous scaffolds 
                  with improved biostability for skin 
                  tissue engineering. Biomaterials 24(26): 4833-4841. 
                Mehdi, 
                  K.N., Mehran, S.H. & Mohammad, P. 2006. Fabrication of porous 
                  hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde 
                  for bone tissue engineering. Iranian Journal of Biotechnology 
                  4(1): 54-60. 
                Nurnadiah, 
                  A., Hemabarathy, B., Zariyantey, 
                  A.H. & Zulaikha, Z. 2017. Cytotoxicity 
                  and oxidative stress evaluation of alginate/ cockle shell powder 
                  nanobiocomposite bone scaffold on osteoblast. Jurnal Sains Kesihatan Malaysia 15(1): 97-103. 
                O’Brien, 
                  F.J. 2011. Biomaterials & scaffolds for tissue engineering. 
                  Materials Today 14(3): 88-95. 
                Perez, 
                  V.P., Romero, A. & Guerrero, A. 2016. Influence of collegen concentraion and glutaraldehyde 
                  on collegen based scaffold properties. 
                  Journal of Biomedical Material Research 104(6): 1462-1468. 
                  
                Shea, 
                  L.D., Wang, D., Franceschi, R.T. & 
                  Mooney, D.J. 2000. 
                  Engineered bone development from a pre-osteoblast cell. Tissue 
                  Engineering 6(6): 605-617. 
                Sheu, 
                  M.T., Huang, J.C., Yeh, G.C. & 
                  Ho, H.O. 2001. Characterization of collagen gel solutions and collagen matrices for 
                  cell culture. Biomaterials 22(13): 1713-1719. 
                  
                Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. & 
                  Cheng, L. 2007. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide 
                  composite scaffolds for bone tissue engineering. Biomaterials 
                  28: 3338-3348.
                Yang, 
                  Y., Alastair, C.R. & Nicole, M.E. 2017. Comparison of 
                  glutaraldehyde and procyanidin cross-linked 
                  scaffolds for soft tissue engineering. Material 
                  Sciences and Engineering C 89: 263-273. 
                Zhang, Y. & Zhang, M. 2000. Synthesis and characterization of macroporous 
                  chitosan/calcium phosphate composite scaffolds for tissue engineering. 
                  J. Biomed. Mater. Res. 55: 304-312.
                Zuki, A.B., Bahaa, F.H. & Noordin, 
                  M.M. 2011. Cockle shell-based biocomposite scaffold  for  bone  tissue  engineering. Regenerative  Medicine  and  Tissue Engineering 11: 
                  365-390. 
                 
                *Pengarang 
                  untuk surat-menyurat; 
                  email: hema@ukm.edu.my