Sains Malaysiana 47(10)(2018): 2573–2580

http://dx.doi.org/10.17576/jsm-2018-4710-34

 

Physico-mechanical Properties of Glass Fibre Reinforced Biophenolic Elastomer Composite

(Sifat Fiziko-Mekanikal Gentian Kaca Biofenolik Elastomer Komposit Bertetulang)

ZUHAILI ZAKARIA1, SARANI ZAKARIA1*, RASIDI ROSLAN2, CHIN HUA CHIA1, SHARIFAH NABIHAH SYED JAAFAR1, UMAR ADLI AMRAN1 & SINYEE GAN1

 

1Bioresources and Biorefinery Laboratory, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia

 

Diserahkan: 1 Mac 2018/Diterima: 13 Jun 2018

 

ABSTRACT

In this study oil palm empty fruit bunches (EFB) fibers was used to synthesize biophenolic resin (BPR) at a different formaldehyde/liquefied empty fruit bunches (F/LEFB) molar ratio which is 1.0, 1.5 and 2.0. The higher molar ratio of F/LEFB used has resulted in an increased of viscosity and solid content of BPR resin. The first decomposition of BPR resin occured around 86 to 130°C due to the evaporation of low molecular weight substance which were water, free phenol and formaldehyde. Glass fiber reinforced biophenolic composite (BPC) and glass fiber reinforced biophenolic elastomer composite (BPEC) was successfully fabricated using BPR resin. The impact strength and flexural strain of BPEC were higher than that of BPC. The impact strength of BPEC 1.5 was the highest at 47.71 kJm-2. However, the flexural strength of BPEC was lower compared with BPC, which the highest flexural strength was obtained by BPC 1.0 at 65.18 MPa. The cross-sectional image from scanning electron microscope (SEM) of BPEC and BPC confirmed the presence of epoxidized natural rubber (ENR) improved the compatibility between glass fiber and BPR resin.

 

Keywords: Epoxidized natural rubber; interlocking; liquefaction; oil palm empty fruit bunches; prepreg

 

ABSTRAK

Kajian ini dijalankan dengan menggunakan serabut tandan kosong kelapa sawit (EFB) bagi menghasilkan resin biofenolik (BPR) berdasarkan nisbah molar formaldehid/serabut tandan kosong kelapa sawit tercecair (F/LEFB) yang berbeza iaitu 1.0, 1.5 and 2.0. Nisbah molar F/LEFB yang tinggi telah menyebabkan kelikatan dan kandungan pepejal resin BPR meningkat. Penguraian pertama bagi resin BPR berlaku pada suhu sekitar 80 sehingga 130°C disebabkan pemeluapan bahan berat molekul yang rendah seperti air, formaldehid dan fenol. Komposit berpenguat gentian kaca (BPC) dan komposit biofenolik elastomer berpenguat gentian kaca (BPEC) telah berjaya dihasilkan mengguna resin BPR. Kekuatan hentaman dan terikan lenturan BPEC adalah lebih tinggi berbanding BPC. Namun, kekuatan lenturan BPEC adalah lebih rendah berbanding BPC. Imej daripada mikroskopi imbasan elektron (SEM) bagi keratan rentas BPEC dan BPC menunjukkan kehadiran getah asli terepoksida (ENR) meningkatkan keserasian di antara resin BPR dan gentian kaca.

 

Kata kunci: Getah asli terepoksida; pencecairan; prapreg; saling kunci; serabut tandan kosong kelapa sawit

RUJUKAN

Abdalla, M.O., Ludwick, A. & Mitchell, T. 2003. Boron-modified phenolic resins for high performance applications. Polymer 44(24): 7353-7359.

Ahmadzadeh, A., Zakaria, S. & Rashid, R. 2009. Liquefaction of oil palm empty fruit bunch (efb) into phenol and characterization of phenolated efb resin. Industrial Crops and Products 30(1): 54-58.

Ahmadzadeh, A., Zakaria, S., Rashid, R. & Jaafar, S.N.S. 2008. Effect of filler and thermal aging on the mechanical properties of phenolated oil palm empty fruit bunch-base composite. Sains Malaysiana 37(4): 383-387.

Alma, M.H. & Basturk, M.A. 2006. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Industrial Crops and Products 24(2): 171-176.

Alma, M.H., Maldas, D. & Shiraishi, N. 1998. Liquefaction of several biomass wastes into phenol in the presence of various alkalis and metallic salts as catalyst. J. Polym. Eng. 18(3): 161-177.

Alyamac, E., Gu, H., Soucek, M.D., Qiu, S. & Buchheit, R.G. 2012. Alkoxysilane oligomer modified epoxide primers. Progress in Organic Coatings 74(1): 67-81.

Amran, U.A., Zakaria, S., Chia, C.H., Jaafar, S.N.S. & Roslan, R. 2015. Mechanical properties and water absorption of glass fibre reinforced bio-phenolic elastomer (BPE) composite. Industrial Crops and Products 72: 54-59.

Auad, M.L., Zhao, L., Shen, H., Nutt, S.R. & Sorathia, U. 2007. Flammability properties and mechanical performance of epoxy modified phenolic foams. Journal of Applied Polymer Science 104: 1399-1407.

Azahari, N.A., Zakaria, S., Kaco, H., Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Regenerated kenaf cellulose membrane from NaOH/urea aqueous solution by coagulating with sulphuric acid. Sains Malaysiana 46(5): 795-801.

Chen, Z., Zeng, W., Chen, Y., Li, W. & Liu, H. 2012. Influence of F/P on structure and thermal property of phenolic resin. Key Eng. Mater. 500: 98-103.

Effendi, A., Gerhauser, H. & Bridgwater, A.V. 2008. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews 12(8): 2092-2116.

Gan, S., Zakaria, S., Chen, R.S., Chia, C.H., Padzil, F.N.M. & Moosavi, S. 2017. Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated bio-based materials. Materials Chemistry and Physics 192: 181-189.

Gani, A. & Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy 32(4): 649-661.

Hamzah, R., Bakar, M.A., Khairuddean, M., Mohammed, I.A. & Adnan, R. 2012. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 17(9): 10974-10993.

Haupt, R.A. & Sellers, T. Jr. 1994. Characterizations of phenol-formaldehyde resol resins. Industrial & Engineering Chemistry Research 33(3): 693-697.

Hu, L., Zhou, Y. & Liu, R. 2012. Characterization and properties of a lignosulfonate-based phenolic foam. Bioresources 7(1): 554-564.

Kallitsis, J.K. & Kalfoglou, N.K. 1989. Compatibility of epoxidized natural rubber with thermoplastic and thermosetting resins. Journal of Applied Polymer Science 37(2): 453-465.

Kaynak, C. & Cagatay, O. 2006. Rubber toughening of phenolic resin by using nitrile rubber and amino silane. Polymer Testing 25(3): 296-305.

Lee, S.H., Teramoto, Y. & Shiraishi, N. 2002. Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. Journal of Applied Polymer Science 84(3): 468-472.

Lenghaus, K., Qiao, G.G. & Solomon, D.H. 2001. The effect of formaldehyde to phenol ratio on the curing and carbonisation behaviour of resole resins. Polymer 42(8): 3355-3362.

Lin, L., Yoshioka, M., Yao, Y. & Shiraishi, N. 1994. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science 52(11): 1629-1636.

Ohsawa, T., Nakayama, A., Miwa, M. & Hasegawa, A. 1978. Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. Journal of Applied Polymer Science 22(11): 3203-3212.

Phinyocheep, P., Phetphaisit, C.W., Derouet, D., Campistron, I. & Brosse, J.C. 2005. Chemical degradation of epoxidized natural rubber using periodic acid: Preparation of epoxidized liquid natural rubber. Journal of Applied Polymer Science 95(1): 6-15.

Pizzi, A. 2003. Phenolic resin adhesives. In Handbook of Adhesive Technology. Second Edition, Revised and Expanded, edited by Pizzi, A. & Mittal, K.L. Boca Raton: CRC Press. p. 541.

Pua, F.L., Zakaria, S., Chia, C.H., Fan, S.P., Rosenau, T., Potthast, A. & Liebner, F. 2013. Solvolytic liquefaction of oil palm empty fruit bunch (EFB) fibres: Analysis of product fractions using FTIR and Pyrolysis-GCMS. Sains Malaysiana 42(6): 793-799.

Roslan, R., Zakaria, S., Chia, C.H., Boehm, R. & Laborie, M.P. 2014. Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres. Industrial Crops and Products 62: 119-124.

Siti Noorul Aina Ab Rahim, Sarani Zakaria., Sharifah Nabihah Syed Jaafar, Chin Hua Chia, Rasidi Roslan, Hatika Kaco & Sinyee Gan. 2017. As-spun bio-novolac fiber morphological study based on resin’s physico-chemical properties. Sains Malaysiana 46(9): 1659-1665.

Sreekala, M.S., George, J., Kumaran, M.G. & Thomas, S. 2002. The mechanical performance of hybrid phenol-formaldehyde- based composites reinforced with glass and oil palm fibres. Composites Science and Technology 62(3): 339-353.

 

*Pengarang untuk surat-menyurat; email: szakaria@ukm.edu.my

 

 

 

 

 

 

 

 

sebelumnya