Sains Malaysiana 47(11)(2018): 2625–2635

http://dx.doi.org/10.17576/jsm-2018-4711-05

 

Influence of Field Soil Drought Stress on Some Key Physiological, Yield and Quality Traits of Selected Newly-Developed Hexaploid Bread Wheat (Triticum aestivum L.) Cultivars

(Pengaruh Tekanan Tanah Kemarau kepada Fisiologi, Hasil dan Sifat Kualiti bagi Kultivar Jenis Roti Gandum Heksaploid Pra-Maju yang Terpilih (Triticum aestivum L.))

TARIQ SHAHZAD1, MUHAMMAD ASHRAF2, MUHAMMAD MANSOOR JAVAID1*, HASNAIN WAHEED1, TASAWER ABBAS1, FENG-MIN LI3 & ABDUL SATTAR4

 

1Department of Agronomy, University College of Agriculture, University of Sargodha, Sargodha, Pakistan

 

2Pakistan Science Foundation, Islamabad, Pakistan

 

3School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China

 

4College of Agriculture, BZU, Bahadur Campus Layyah, Pakistan

 

Diserahkan: 26 Februari 2018/Diterima: 4 Julai 2018

 

ABSTRACT

Drought is one of the commonly occurring environmental stresses, limiting crop production in many countries. Selection of cultivar is the most effective and economical means for alleviating the adverse effects of drought stress on crops. The present study aimed to investigate the growth, some physiological processes, yield and quality of some newly-developed wheat cultivars (AARI-2011, AAS-2011, Faisalabad-2008, Millat-2011 and Punjab-2011) under field drought stress conditions. The cultivars were sown in a field under normal irrigation and drought-induced conditions. Maximum net photosynthetic rate was recorded in cv. AAS-2011 at growth stage of 67 days after wheat emergence under normal irrigation and cv. Faisalabad-2008 at 67 days after wheat emergence under drought condition. Leaf stomatal conductance and transpiration rate were maximum in cv. Faisalabad-2008 under drought conditions. The adverse effects of drought stress were observed more on cv. Millat-2011 than Faisalabad-2008, with respect to net photosynthetic rate and transpiration. Drought exerted a significant adverse effect on leaf stomatal conductance at 74 days after wheat emergence which was recorded as 230 mmol m-2 s-1. Among the cultivars, AAS-2011 recorded maximum yield traits and grain yield under normal irrigation condition and Faisalabad-2008 under drought condition. Cultivar Millat-2011 was the most susceptible to drought and Faisalabad-2008 the most resistant to drought. Faisalabad-2008 maintained the quality at the most under drought stress conditions. It is concluded that Fasialabad-2008 should be grown under field drought conditions to achieve maximal yield and quality of wheat.

 

Keywords: Photosynthetic activity; protein; starch; water deficit; wheat production

 

ABSTRAK

Kemarau merupakan salah satu tekanan alam sekitar yang biasanya berlaku yang mengehadkan pengeluaran tanaman di banyak negara. Pemilihan kultivar adalah cara yang paling berkesan dan bersifat ekonomi untuk mengurangkan kesan buruk daripada tekanan kemarau ke atas tanaman. Kajian ini bertujuan untuk mengkaji pertumbuhan, proses fisiologi, hasil dan kualiti kultivar gandum yang baru dibangunkan (AARI-2011, AAS-2011, Faisalabad-2008, Millat-2011 dan Punjab-2011) pada tanah yang bertekanan kemarau. Kultivar telah dicambah di padang yang tidak mempunyai pengairan yang baik serta telah teraruh-kemarau. Kadar bersih fotosintesis maksimum yang dicatatkan dalam cv. AAS-2011 peringkat pertumbuhan 67 hari selepas kemunculan gandum di bawah pengairan biasa dan cv. Faisalabad-2008 peringkat pertumbuhan 67 hari selepas kemunculan gandum di bawah keadaan kemarau. Daun stomatal konduktans dan kadar transpirasi paling maksimum adalah tanaman cv. Faisalabad-2008 dalam keadaan kemarau. Kesan-kesan negatif disebabkan tekanan kemarau lebih terlihat kepada cv. Millat-2011 berbanding Faisalabad-2008, dari sudut kadar fotosintesis bersih dan transpirasi. Kemarau memberi impak negatif yang besar pada konduksi stomatal daun pada hari ke-74 selepas kemunculan gandum yang direkodkan ialah 230 mmol m-2 s-1. Kulvitar AAS-2011 mencatatkan ciri hasil dan hasil bijirin yang maksimum untuk pengairan yang lemah manakala kulvitar Faisalabad-2008 pula di dalam keadaan kemarau. Kultivar Millat-2011 adalah yang paling rentan dengan kemarau dan kultivar Faisalabad-2008 yang paling bertahan dengan kemarau. Kultivar Faisalabad-2008 masih berkualiti walaupun dalam keadaan kemarau. Kesimpulannya adalah kultivar Fasialabad-2008 perlu ditanam dalam keadaan kemarau untuk mencapai hasil dan kualiti gandum yang maksima.

 

Kata kunci: Aktiviti fotosintesis; defisit air; kanji; pengeluaran gandum; protein

RUJUKAN

Ahmed, N., Chowdhry, M.A., Khaliq, I. & Maekawa, M. 2007. The inheritance of yield and yield components of five wheat hybrid populations under drought conditions. Indonesia Journal of Agricultural Science 8: 53-59.

Anderson, W. 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research 116: 14-22.

Anjum, S.A., Xie, X.Y., Wang, L., Saleem, M.F., Man, C. & Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6: 2026-2032.

Ashraf, M. 2010. Inducing drought tolerance in plants: Recent advances. Biotechnology Advances 28: 169-183.

Ashraf, M. & Harris, P. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica 51: 163-190.

Bordei, D., Bahrim, G., Pâslaru, V., Gasparotti, C., Elizei, A., Banu, I., Ionescu, L. & Codină, G. 2007. Determinarea proprietatilor de panificatie ale fainii. In Controlul Calitatii in Industria Panificatiei. Metode de Analiza, edited by Bordei, D. Romania: Academica Galati. pp. 343-445.

Beleggia, R., Platani, C., Nigro, F., De Vita, P., Cattivelli, L. & Papa, R. 2013. Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. Journal of Cereal Sciences 57: 183-192.

BeNCze, S. & VeiSz, O. 2011. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech Journal of Food Science 29: 117-128.

Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J. & Salvucci, M.E. 2012. Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany 83: 1-11.

Chastain, D.R., Snider, J.L., Collins, G.D., Perry, C.D., Whitaker, J. & Byrd, S.A. 2014. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of Plant Physiology 171: 1576-1585.

Chaves, M., Flexas, J. & Pinheiro, C. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annual of Botany 103: 551-560.

Denčić, S., Mladenov, N. & Kobiljski, B. 2011. Effects of genotype and environment on breadmaking quality in wheat. International Journal of Plant Production 5: 71-82.

Driever, S.M., Lawson, T., Andralojc, P., Raines, C.A. & Parry, M. 2014. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. Journal of Experimental Botany 65: 4959-4973.

Fischer, R.A. & Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research 29: 897-907.

Flagella, Z., Giuliani, M.M., Giuzio, L., Volpi, C. & Masci, S. 2010. Influence of water deficit on durum wheat storage protein composition and technological quality. Eurepean Journal of Agronomy 33: 197-207.

Flood, P.J., Harbinson, J. & Aarts, M.G. 2011. Natural genetic variation in plant photosynthesis. Trends in Plant Sciences 16: 327-335.

Gilbert, M.E., Zwieniecki, M.A. & Holbrook, N.M. 2011. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. Journal of Experimental Botany 62: 2875-2887.

Giuliani, M.M., De Santis, M.A., Pompa, M., Giuzio, L. & Flagella, Z. 2014. Analysis of gluten proteins composition during grain filling in two durum wheat cultivars submitted to two water regimes. Italian Journal of Agronomy 9: 15-19.

Gooding, M., Ellis, R., Shewry, P. & Schofield, J. 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science 37: 295-309.

Gu, J., Yin, X., Stomph, T.J. & Struik, P.C. 2014. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant & Cell Environment 37: 22-34.

Gu, J., Yin, X., Struik, P.C, Stomph, T.J. & Wang, H. 2012. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. Journal of Experimental Botany 63: 455-469.

Guedira, M., McCluskey, P.J., MacRitchie, F. & Paulsen, G.M. 2002. Composition and quality of wheat grown under different shoot and root temperatures during maturation. Cereal Chemistry 79: 397-403.

Hajheidari, M., Eivazi, A., Buchanan, B.B., Wong, J.H., Majidi, I. & Salekdeh, G.H. 2007. Proteomics: Uncovers a role for redox in drought tolerance in wheat. Journal of Protection and Research 6: 1451-1460.

Hikosaka, K. & Shigeno, A. 2009. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160: 443-451.

Jahn, C.E., Mckay, J.K., Mauleon, R., Stephens, J., McNally, K.L., Bush, D.R., Leung, H. & Leach, J.E. 2011. Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiology 155: 157-168.

Jie, Z., Yuncong, Y., Streeter, J.G. & Ferree, D.C. 2013. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phosphorus absorb in different section of leaves and stem of Fugi/M. 9EML, a young apple seedling. African Journal of Biotechnology 9: 5320-5325.

Juenger, T.E. 2013. Natural variation and genetic constraints on drought tolerance. Current Opinion in Plant Biology 16: 274-281.

Kilic, H. & Yağbasanlar, T. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici 38: 164-170.

Lawson, T. & Blatt, M.R. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556-1570.

Lawson, T., Kramer, D.M. & Raines, C.A. 2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opinion in Biotechnology 23: 215-220.

Lawson, T., von Caemmerer, S. & Baroli, I. 2011. Photosynthesis and stomatal behaviour. Progress Botany 72: 265-304.

Leilah, A. & Al-Khateeb, S. 2005. Statistical analysis of wheat yield under drought conditions. Journal of Arid Environment 61: 483-496.

Nazco, R., Villegas, D., Ammar, K., Peña, R.J., Moragues, M. & Royo, C. 2012. Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica 185: 1-17.

Nouri-Ganbalani, A., Nouri-Ganbalani, G. & Hassanpanah, D. 2009. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil. Iranian Journal of Food Agricultural and Environment 7: 228-234.

Ozturk, A. & Aydin, F. 2004. Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy and Crop Science 190: 93-99.

Peterson, C., Graybosch, R., Baenziger, P. & Grombacher, A. 1992. Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Science 32: 98-103.

Pinheiro, C. & Chaves, M. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany 62: 869-882.

Pradhan, G.P., Prasad, P.V., Fritz, A.K., Kirkham, M.B. & Gill, B.S. 2012. Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology 39: 190-198.

Raines, C.A. 2011. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiology 155: 36-42.

Reddy, A.R., Chaitanya, K.V. & Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202.

Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V. & Del Moral, L.G. 2003. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops and Research 80: 133-140.

Rybka, K. & Nita, Z. 2015. Physiological requirements for wheat ideotypes in response to drought threat. Acta Plant Physiology 37: 1-13.

Saint-Pierre, C., Peterson, C., Ross, A., Ohm, J., Verhoeven, M., Larson, M. & Hoefer, B. 2008. Winter wheat genotypes under different levels of nitrogen and water stress: Changes in grain protein composition. Journal of Cereal Science 47: 407-416.

Shangguan, Z., Shao, M., Ren, S., Zhang, L. & Xue, Q. 2004. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat. Botanical Bulletin Academia Sinica 45: 49-54.

Shewry, P.R., Piironen, V., Lampi, A.M., Edelmann, M., Kariluoto, S., Nurmi, T., Fernandez-Orozco, R., Ravel, C., Charmet, G. & Andersson, A.A. 2010. The health grain wheat diversity screen: Effects of genotype and environment on phytochemicals and dietary fiber components. Journal of Agriculture and Food Chemistry 58: 9291-9298.

Shukla, N., Awasthi, R., Rawat, L. & Kumar, J. 2015. Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annual of Applied Biology 166: 171-182.

Steel, R., Torrie, J. & Dickey, D. 1997. Principles and Procedures of Statistics: A Biometric Approach. 3rd ed. USA: McGraw Hill Companies Inc.

Vandoorne, B., Mathieu, A.S., van Den Ende, W., Vergauwen, R., Périlleux, C., Javaux, M. & Lutts, S. 2012. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. Journal of Experimental Botany 63: 4359-4373.

 

*Pengarang untuk surat-menyurat; email: mmansoorjavaid@gmail.com

 

 

 

 

 

sebelumnya