Sains Malaysiana 47(11)(2018): 2657–2666
http://dx.doi.org/10.17576/jsm-2018-4711-08
A New Copper Ionophore
N1,
N3-Bis
[[3,5-Bis(Trifluoromethyl)Phenyl] Carbamothioyl] Isophtalamide for Potentiometric Sensor
(Ionofor Kuprum Baru N1,N3-Bis [[3,5-Bis(Trifluorometil)Fenil]-Karbamotioil]
Isoftalamida sebagai
Sensor Potensiometri)
KOOK SHIH
YING,
LEE
YOOK
HENG*,
NURUL
IZZATY
HASSAN
& SITI AISHAH HASBULLAH
School
of Chemical Sciences and Food Technology, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 28 Februari
2018/Diterima: 6 Julai
2018
ABSTRACT
A copper ion sensor based on
a new bis-thiourea compound N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide
(or TPC) as neutral carrier was investigated. The immobilization
of the TPC into poly(n-butyl
acrylate) (pBA) membrane via drop casting
and the sensor was characterized by potentiometry.
The sensor fabricated from TPC only showed a good Nernstian response
towards copper ion with a sensitivity slope of 28.81±0.53mV/decade
in the range of 1.0 × 10-6 - 1.0 × 10-4 M.
The limit of detection of this sensor was found to be 6.11 × 10-7 M
and with short sensor response time (60 - 80 s). This sensor also
demonstrated reversibility and reproducibility with 3.69% and
1.84% (Relative Standard Deviation, RSD), respectively. Based on the separate solution method
(SSM),
the logarithm selectivity coefficients were better than -2.00
for monovalent, divalent and trivalent cations and this confirmed
that the sensor exhibited good selectivity towards copper ion.
The sensor could attain optimum function without the need in the
inclusion of either lipophilic anions
as a membrane additive nor plasticizer as a membrane softener.
Thus, these are the main advantages. The addition of lipophilic
anions into the pBA membrane could cause the sensitivity and selectivity of
the copper ion sensor based on ionophore
TPC
to deteriorate.
Keywords: Anionic lipophilic
salt; neutral carrier; N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide
(TPC);
potentiometric copper ion sensor
ABSTRAK
Sensor ion kuprum yang berasaskan kepada sebatian bis-tiourea baru, N1,N3-bis[[3,5-bis(trifluorometil)fenil]karbamotioil]isoftalamida
(TPC)
sebagai pembawa
neutral telah dikaji. Pencirian
sensor dijalankan melalui
kaedah potensiometri dan TPC dipegunkan
ke dalam membran poli(n-butil akrilat)
(pBA) secara
penyalutan. Sensor ion yang direka bentuk dengan
menggunakan TPC sahaja
menunjukkan rangsangan
Nernstian, iaitu 28.81±0.53mV/dekad
dengan julat
kelinearan daripada 1.0 × 10-6
– 1.0 × 10-4 M. Had pengesanan adalah serendah 6.11 × 10-7
M dan masa rangsangan
ialah 60 hingga 80 saat. Nilai sisihan piawai
relatif bagi
ujian kebolehbalikan dan kebolehhasilan sensor ini masing-masing ialah 3.69% dan 1.84%. Berdasarkan kepada kaedah larutan berasingan (SSM), nilai
pekali logaritma
kepilihan bagi sensor ini adalah lebih
baik daripada
-2.00 bagi kation monovalen,
divalen dan
trivalen seterusnya memaparkan kepilihan yang baik terhadap ion kuprum. Kebaikan sensor ini adalah
bahan penambahan
membran seperti anion lipofilik dan pelembut
membran seperti
pemplastik tidak diperlukan untuk mencapai fungsi sensor yang optimum.
Sebaliknya, penambahan anion lipofilik
dalam membran
pBA boleh menjejaskan
kepekaan dan
kepilihan sensor ion kuprum berasaskan ionofor TPC.
Kata kunci: Garam
anion lipofilik; kuprum
ion sensor potensiometri; N1,N3-bis[[3,5-bis(trifluorometil)fenil]karbamotioil]isoftalamida
(TPC); pembawa neutral
RUJUKAN
Alva,
S. 2008. Pembinaan sensor ion dan biosensor potentiometri pepejal berasaskan elektrod bercetak skrin dan filem fotopolimer
metakrilik-akrilik. Tesis
Ph.D. Fakulti Sains
& Teknologi, Universiti Kebangsaan
Malaysia (Unpublished).
Alva, S., Lee, Y.H. & Ahmad, M. 2005. A new lithium ion selective sensors based on self plasticising acrylic films and disposable screen printed electrode.
2005 Asian Conference on Sensors and the International Conference
on New Techniques in Pharmaceutical and Biomedical Research -
Proceedings 2005: 48-51.
Amemiya, S.,
Buhlmann, P., Pretsch,
E., Rusterholz, B. & Umezawa,
Y. 2000. Cationic or anionic sites? Selectivity
optimization of ion-selective electrodes based on charged ionophores.
Analytical Chemistry 72(7): 1618-1631.
Buck, R.P. & Lindneri, E.R.N. 1994. Recomendations
for nomenclature of ion-selective electrodes. Pure and
Applied Chemistry 66(12): 2527-2536.
Faridbod, F., Ganjali,
M.R., Dinarvand, R. & Norouzi,
P. 2008. Schiff’s Bases and crown ethers as supramolecular sensing
materials in the construction of potentiometric membrane sensors.
Sensors 8: 1645-1703.
Ghanei-motlagh, M.,
Fayazi, M. & Taher,
M.A. 2014. On the potentiometric response of mercury (II)
membrane sensors based on symmetrical thiourea
derivatives - Experimental and theoretical approaches.
Sensors & Actuators: B. Chemical 199: 133-141.
Huang,
M.R., Gu, G.L.,
Shi, F.Y. & Li, X.G. 2012. Development of
potentiometric lead ion sensors based on ionophores
bearing oxygen/sulfur-containing functional groups. Fenxi
Huaxue/Chinese Journal of Analytical
Chemistry 40(1): 50-58.
Jumal, J.,
Yamin, B.M., Ahmad, M. & Lee, Y.H.
2012. Mercury
ion-selective electrode with self-plasticizing poly (n-buthylacrylate) membrane based on 1, 2-bis- (N’ - benzoylthioureido) cyclohexane as ionophore.
APCBEE Procedia 3: 116-123.
Khairi. 2016.
New thiourea compounds as ionophores
for potentiometric sensors of H2PO4- and Hg2+.
Tesis Ph.D, Fakulti
Sains & Teknologi,
Universiti Kebangsaan Malaysia (Unpublished).
Khan, M.A., Mehmood, S., Ullah, F., Khattak, A. & Alam Zeb, M. 2017. Health risks assessment
diagnosis of toxic chemicals (heavy metals) via food crops consumption
irrigated with wastewater. Sains
Malaysiana 46(6): 917-924.
Kisiel, A.,
Woznica, E., Wojciechowski,
M., Bulska, E., Maksymiuk,
K. & Michalska, A. 2015. Potentiometric
layered membranes. Sensors & Actuators: B. Chemical 207:
995-1003.
Kook,
S.Y. & Lee, Y.H. 2017. A screen-printed copper ion sensor with photocurable
poly(n-butyl acrylate) membrane based
on ionophore o-xylylene bis(N,N-diisobutyl dithiocarbamete). Malaysian Journal of Analytical Sciences
21(1): 1-12.
Kopylovich, M.N., Mahmudov, K.T. & Pombeiro, A.J.L.
2011.
Poly(vinyl) chloride membrane copper-selective electrode based
on 1-phenyl-2-(2-hydroxyphenylhydrazo) butane- 1,3-dione. Journal
of Hazardous Materials 186: 1154-1162.
Lazo, A.R., Bustamante,
M., Jimenez, J., Arada, M.A. & Yazdani- Pedram, M. 2006. Preparation and study of a 1-furoyl3,3-
diethylthiourea electrode. J. Chil.
3: 975-978.
Lee, Y.H. &
Hall, E.A.H. 2001.
Assessing a photocured
self-plasticised acrylic membrane recipe for Na+ and K+ ion selective
electrodes. Analytica
Chimica Acta 443(1): 25-40.
Lee, Y.H. &
Hall, E.A.H. 1996.
Methacrylate-acrylate based polymers of low plasticiser
content for potassium ion-selctive membranes.
Analytica Chimica Acta 324(1): 47-56.
Motlagh, M.G., Taher, M.A. & Ali, A. 2010. Electrochimica
Acta PVC membrane and coated graphite
potentiometric sensors based on 1-phenyl-3-pyridin-2-yl-thiourea
for selective determination of iron (III). Electrochimica
Acta 55(22): 6724-6730.
Nurulain, K., Sahilah,
A.M., Fatin, I.N. & Hassan, N.I.
2016. Characterization and antimicrobial studies of five substituted bis-thioureas. Malaysia Journal of Analytical Sciences
20(1): 85-90.
Perez-Marín, L., Castro, M., Otazo-Sánchez,
E. & Cisneros, G.A. 2000.
Density functional study of molecular recognition and reactivity
of thiourea derivatives used in sensors for heavy metal polluting
cations. International Journal of Quantum Chemistry 80(4-5):
609-622.
Pérez, M.D.L.A.A.,
Yanes, S.L. & Cardona, M. 2010. Copper(II)
selective electrodes based on 1-furoyl-3,3’-diethylthiourea as
a neutral carrier. Journal of the Chilean Chemical Society
3: 371-373.
Saeed, A., Flörke, U. & Erben, M.F. 2014.
A review on the chemistry, coordination, structure and biological
properties of 1-(acyl/aroyl)-3-(substituted)
thioureas. Journal of Sulfur Chemistry
35(3): 318-355.
Sajab, M.S., Chia,
C.H., Zakaria, S. & Sillanpää, M.
2017. Adsorption of heavy metal ions
on surface of functionalized oil palm empty fruit bunch fibres:
Single and binary systems. Sains
Malaysiana 46(1): 157-165.
Siswanta, D., Wulandari, Y.D. & Jumina, J.
2016.
Synthesis of poly(benzyleugenol)
and its application as an ionophore
for a potassium ion-selective electrode. Eurasian Journal of
Analytical Chemistry 11(3): 115-125.
Umezawa, Y., Umezawa,
K., Tohda, K. & Amemiya,
S. 2000. Potentiometric selectivity coefficients
of ion selective electrodes. Pure and Applied Chemistry
72(10): 1851-2082.
Wilson, D., de los Ángeles Arada,
M., Alegret, S. & del
Valle, M. 2010. Lead(II) ion selective
electrodes with PVC membranes based on two bis-thioureas
as ionophores: 1,3-bis(N’- benzoylthioureido)benzene
and 1,3-bis(N’-furoylthioureido) benzene.
Journal of Hazardous Materials 181(1-3): 140-146.
Woźnica, E., Mieczkowski, J. & Michalska,
A. 2011.
Electrochemical evidences and consequences of significant differences
in ions diffusion rate in polyacrylate-based
ion-selective membranes. The Analyst 136: 4787.
Yew, P.L. &
Lee, Y.H. 2014.
A reflectometric ion sensor for potassium
based on acrylic microspheres. Sensors and Actuators, B: Chemical
191: 719-726.
*Pengarang
untuk surat-menyurat;
email: leeyookheng@yahoo.co.uk