Sains Malaysiana 47(11)(2018): 2757–2767
http://dx.doi.org/10.17576/jsm-2018-4711-18
Strides towards the Realization
of Cure for Cartilage Defects and Osteoarthritis: The Limitation
and Regulatory Challenges
(Kemajuan ke Arah Merealisasikan Perubatan
bagi Kecacatan Tulang Rawan dan Osteoartitis: Had dan Cabaran
Pengawalan)
UDE CHINEDU
CLETUS1,
AZIZI
MISKON1
& RUSZYMAH BT HJ IDRUS2*
1Bio-artifical Organ
and Regenerative Medicine Unit, National Defence University of
Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory,
Malaysia
2Department of Physiology,
Medical Faculty National University of Malaysia Medical Center,
Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Federal
Territory, Malaysia
Diserahkan: 25
Mac 2018/Diterima: 30 Julai 2018
ABSTRACT
Despite remarkable mechanical
durability and strength, hyaline cartilage has very limited capacity
for self-repair when injured and over time, may degenerate to
osteoarthritis. We evaluated the most significant mile stones
attained, in the pursuit of cure for cartilage defects and osteoarthritis.
The basic treatment options include: Natural or physical therapy,
medications, nutritional supplements, nutriceuticals and chondroprotective
agents. Next are repairs and replacements, which include surgical
procedures: Debridement/chondroplasty, microfracturing, mosaicplasty,
periosteum transplantation, osteochondral autografting and allografting,
high tibial osteotomy and total knee arthroplasty. But, current
trend has shifted from repair, replacement, to most recently regeneration.
Regenerations include the cell and gene therapies. While cell
therapy involves the use of cells isolated from different tissues
to cause regeneration of cartilage; gene therapy involves the
selection of appropriate gene and optimal vector to incorporate
cDNA. There has been much positivity reported
with big animal models, which has led to several ongoing clinical
trials. Translations of these findings hold high promises, though
not without inherent regulatory hurdles. Considering the initial
success rates, there are increasing hopes of realizing these treatments
from bench to bedsides. Significant improvements in the treatment
of cartilage degenerations and osteoarthritis have been made so
far, but no gold standard delineated.
Keywords: Cartilage defects;
cell therapy; osteoarthritis; tissue engineering
ABSTRAK
Meskipun mempunyai kekuatan
dan ketahanan mekanik yang luar biasa, rawan hialin mempunyai
kapasiti yang terhad untuk memulih sendiri apabila tercedera serta
akan merosot kepada osteoartitis. Penilaian bagi langkah paling
berkesan telah dilakukan dalam usaha mengubati kecacatan rawan
dan osteoartitis. Rawatan asas termasuk: terapi semula jadi atau
fizikal, ubat-ubatan, pemakanan tambahan, nutriseutis dan agen
kondropelindung. Selepas itu adalah pembaikan dan penggantian
melalui pembedahan: Debridemen/kondroplasti, mikropatah, mozaikplasti,
pemindahan periosteum, autocantuman dan alocantuman osteokondral,
osteotomi tibial tinggi dan jumlah artroplasti lutut. Namun, trend
terbaru beralih daripada pembaikan dan penggantian kepada penjanaan
semula. Penjanaan semula termasuk terapi sel dan gen. Terapi sel
melibatkan penggunaan sel-sel yang diasingkan daripada tisu yang
berbeza untuk penjanaan semula rawan manakala terapi gen pula
melibatkan pemilihan gen yang sesuai dan vektor optimum untuk
menggabungkan cDNA.
Banyak laporan positif telah diperoleh dengan menggunakan model
haiwan yang besar lantas menggalakkan beberapa ujian klinikal
secara berterusan. Penemuan ini menunjukkan potensi yang tinggi,
meskipun terdapat cabaran kawalan yang perlu dihadapi. Berdasarkan
kadar kejayaan awal, rawatan ini perlu dipertimbangkan ke tahap
yang lebih tinggi. Kemajuan yang ketara dalam rawatan penjanaan
semula rawan dan osteoartitis telah dapat dilihat setakat ini,
tetapi tidak ada piawaian emas yang ditandakan.
Kata kunci: Kecacatan rawan; kejuruteraan tisu; osteoartitis; terapi
sel
RUJUKAN
Al
Faqeh, H., Yahya, N.M., Chen, C.H., Saim, A.B. & Idrus, R.B.H.
2012. The potential intra-articular injection of chondrogenic-induced
bone marrow stem cells to retard the progression of osteoarthritis
in a sheep model. Experimental Gerontology 47: 458-464.
Aroen,
A., Sverre, L. & Stig, H. 2004. Articular cartilage lesions
in 993 consecutive knee arthroscopie. The
American Journal of Sports Medicine 32(1): 211-215.
Ball,
S.T., Amiel, D. & Williams, S.K. 2004. The effect of storage
on fresh human osteochondral allografts. Clinical
Orthopedics and Related Research 418: 246-252.
Beerheide,
W., Von Mach, M.A. & Ringel, M. 2002. Downregulation of beta2-microglobulin
in human cord blood somatic stem cells after transplantation into
livers of SCID-mice: An escape mechanism of stem cells? Biochem. Biophys. Res. Commun. 294: 1052-1063.
Bobic,
V. 1996. Arthroscopic osteochondral autograft transplantation
in anterior cruciate ligament reconstruction: A preliminary clinical
study. Knee Surg. Sports Traumatol. Arthrosc.
3: 262-264.
Brittberg,
M., Lindahl, A. & Nilsson, A. 1994. Treatment of deep cartilage
defects in the knee with autologous chondrocyte transplantation.
N. Engl. J. Med. 331: 889-895.
Bruce,
M.J., Kimberly, O. & Nancy, J.P. 2002. A controlled trial
of arthroscopic surgery for osteoarthritis of the knee. N.
Engl. J. Med. 347(2): 81-88.
Coventry,
M.B. 1965. Osteotomy of the upper portion of the tibia for degenerative
arthritis of the knee: A preliminary report. J. Bone. Joint Surg. Am. 47(5): 984-990.
David,
T.F., Anthony, C.R. & Graham, J.C. 2016. Recommendations for
the conduct of efficacy trials of treatment devices for osteoarthritis:
A report from a working group of the Arthritis Research UK Osteoarthritis
and Crystal Diseases Clinical Studies Group. Rheumatology
55(2): 320- 326.
Ding,
C., Cicuttini, F., Scott, F., Cooley, H., Boon, C. & Jones,
G. 2006. Natural history of knee cartilage defects and factors
affecting change. Arch. Int. Med. 166: 651-658.
Dragoo,
J.L., Carlson, G. & Mccormick, F. 2007. Healing full-thickness
cartilage defects using adipose-derived stem cells. Tissue
Engineering 13(7): 1615-1621.
Ehlers,
E-M., Fuss, M. & Rohwedel, J. 1999. Development of a bio-composite
to fill out articular cartilage lesions: Light, scanning and transmission
electron microscopy of sheep chondrocytes cultured on a collagen
I/III sponge. Ann. Anat. 181: 513-518.
Estes,
B.T., Diekman, B.O. & Gimbe, J.F. 2010. Isolation of adipose-derived
stem cells and their induction to a chondrogenic phenotype. Nature Protocols 5(7): 1294-1311.2765
Evans,
C.H., Ghivizzani, S.C. & Smith, P. 2000. Using gene therapy
to protect and restore cartilage. Clinical Orthopaedics &
Related Research 379: S214-S219.
Ferguson,
W. 1861. Excision of the knee joint: Recovery with a false joint
and a useful limb. Med. Times Gaz.
Freitag,
J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L. &
Tenen, A. 2016. Mesenchymal stem cell therapy in the treatment
of osteoarthritis: Reparative pathways, safety and efficacy -
A review. BMC Musculoskeletal Disorders 17: 230. doi 10.1186/s12891-016-1085-9.
Gelse,
K., von der Mark, K. & Schneider, H. 2003. Cartilage regeneration
by gene therapy. Curr. Gene Ther. 3: 305-317.
Grande,
D.A., Pitman, M.I. & Peterson, L. 1989. The repair of experimentally
produced defects in rabbit articular cartilage by autologous chondrocyte
implantation. J. Orthop. Res. 7: 208 -218.
Gudas,
R., Kelesinskas, R.J. & Kimtys, V. 2005. A prospective randomized
clinical study of mosaic osteochondral autologous transplantation
versus microfracture for the treatment of osteochondral defects
in the knee joint in young athletes. Arthroscopy: The
Journal of Arthroscopic & Related Surgery 21(9): 1066-1075.
Gunston,
F.H. 1971. Polycentric knee arthroplasty: Prosthetic simulation
of normal knee movement. J. Bone Joint Surg. Br. 53: 272-277.
Ha,
C.W., Noh, M.J., Choi, K.B. & Lee, K.H. 2012. Initial Phase
I safety of retrovirally transduced human chondrocytes expressing
transforming growth factor-beta-1 in degenerative arthritis patients.
Cytotherapy 14: 247-256.
Haddo,
O., Mahroof, S. & Higgs, D. 2004. The use of chondrogide membrane
in autologous chondrocyte implantation. Knee 11: 51-55.
Hangody,
L. & Fule, P. 2003. Autologous osteochondral mosaicplasty
for the treatment of full thickness defects of weight bearing
joints: Ten years of experimental and clinical experience. J.
Bone Joint Surg. Am. 85(2): 25-32.
Hu,
G., Xu, J.J., Deng, Z.H., Feng, J. & Jin, Y. 2011. Supernatant
of bone marrow mesenchymal stromal cells induces peripheral blood
mononuclear cells possessing mesenchymal features. Int. J.
Biol. Sci. 7(3): 364-375.
Kenton,
H.F., Howard, J.H. & Brian, C.H. 2015. State-of-the-art management
of knee osteoarthritis. World J. Clin. Cases 3(2): 89-101.
Kim,
D., Staples, M. & Shinozuka, K. 2013. Wharton’s Jelly-derived
mesenchymal stem cells: Phenotypic characterization and optimizing
their therapeutic potential for clinical applications. Int.
J. Mol. Sci. 14: 11692-11712.
Kim,
H.J. & Im, G.I. 2009. Chondrogenic differentiation of adipose
tissue-derived mesenchymal stem cells: Greater doses of growth
factor are necessary. J. Orthop. Res. 27(5): 612-619.
Kim,
Y.S., Park, E.H. & Lee, H.J. 2012. Clinical comparison of
the osteochondral autograft transfer system and subchondral drilling
in osteochondral defects of the first metatarsal head. Am.
J. Sports Med. 40(8): 1824-1833.
Knoepfler,
P.S. 2015. From bench to FDA to bedside: US regulatory trends
for new stem cell therapies. Advanced Drug Delivery Reviews
82-83: 192-196.
Knutsen,
G., Engebretsen, L. & Ludvigsen, T.C. 2004. Autologous chondrocyte
implantation compared with microfracture in the knee: A randomized
trial. J. Bone Joint Surg. Am. 86(3): 455-464.
Kocher,
A.A., Schuster, M.D. & Szabolcs, M.J. 2001. Neovascularization
of ischemic myocardium by human bone-marrow-derived angioblasts
prevents cardiomyocyte apoptosis, reduces remodelling and improves
cardiac function. Nat. Med. 7: 430-436.
Kohn,
L., Sauerschnig, M. & Iskansar, S. 2013. Age does not influence
the clinical outcome after high tibial osteotomy. Knee Surg.
Sports Traumatol. Arthrosc. 21(1): 146-151.
Kong,
L., Zheng, Lz., Qin, L. & Ho, K.K.W. 2017. Role of mesenchymal
stem cells in osteoarthritis treatment. Journal of Orthopaedic
Translation 9: 89e103 http://dx.doi. org/10.1016/j.jot.2017.03.006.
Kurtz,
S., Ong, K. & Lau, E. 2007. Projections of primary and revision
hip and knee arthroplasty in the United States from 2005 to 2030.
J. Bone Joint Surg. Am. 89(4): 780-785.
Lexar,
E. 1908. Substitution of whole or half joints from freshly amputated
extremities by free plastic operation. Surg. Gynecol. Obstet.
6: 601-607.
Lim,
J., Zainul, R.M.R. & Law, J. 2016. MSCS can be differentially
isolated from maternal, middle and fetal segments of the human
umbilical cord. Cytotherapy 18: 1493-1502.
Liu,
S., Jia, Y. & Yuan, M. 2017. Repair of osteochondral defects
using human umbilical cord Wharton’s jelly-derived mesenchymal
stem cells in a rabbit model. BioMed Research International
2017: 8760383. https://doi. org/10.1155/2017/8760383.
Magnusson,
P.B. 1946. Technique of debridement of the knee joint for arthritis.
Surg. Clin. North Am. 26: 226-249.
Marlene,
F., Maria, A. & Lillias, N. 2015. Glucosamine and chondroitin
for knee osteoarthritis: A double-blind randomized placebo-controlled
clinical trial evaluating single and combination regimens. Ann.
Rheum. Dis. 74: 851-858.
Martel-Pelletier,
J., Camille, R. & François, A. 2015. First-line analysis of
the effects of treatment on progression of structural changes
in knee osteoarthritis over 24 months: Data from the osteoarthritis
initiative progression cohort. Ann. Rheum. Dis. 74: 547-556.
Mathew,
A.P., Augustine, R., Kalarikkal, N. & Thomas, S. 2016. Tissue
engineering: Principles, recent trends and the future. Nanomedicine
and Tissue Engineering: State of the Art and Recent Trends.
New York: Apple Academic Press. pp 31-82.
McAdams,
T.R., Mithoefer, K., Jason, M.S. & Mandelbaum, B.R. 2010.
Articular cartilage injury in athletes. Cartilage 1(3):
165-179.
McAlindon,
T.E., LaValley, M.P. & Gulin, J.P. 2000. Glucosamine and chondroitin
for treatment of osteoarthritis: A systematic quality assessment
and meta-analysis. JAMA 283: 1469-1475.
Messier,
S.P., Loeser, R.F. & Mitchell, M.N. 2000. Exercise and weight
loss in obese older adults with knee osteoarthritis: A preliminary
study. J. Am. Geriatr. Soc. 48: 1062-1072.
Mithoefer,
K., Lars, P. & Marcy, Z.W. 2015. Cartilage issues in football-today’s
problems and tomorrow’s solutions. Br. J. Sports Med. 49:
590-596.
Mithofer,
K., Peterson, L. & Mandelbaum, B.R. 2005. Articular cartilage
repair in soccer players with autologous chondrocyte transplantation:
Functional outcome and return to competition. Am. J. Sports
Med. 33: 1639-1646.
Munirah, S., Aminuddin,
B.S., Samsudin, O.C., Chua, K.H. & Fuzina, N.H. 2005. The
re-expression of Collagen II, Aggrecan and SOX9 in tissue engineered
human articular cartilage. Tissue Engineering and Regenerative
Medicine 2(4): 347-355.
Murphy, J.M., Fink, D.J., Hunziker,
E.B. & Barry, F.P. 2003. Stem cell therapy in a caprine model
of osteoarthritis. Arthritis & Rheumatism 48(12): 3464-3474.
Nehrer, S., Domayer,
S. & Dorotka, R. 2006. Three-year clinical outcome after chondrocyte
transplantation using a hyaluronan matrix for cartilage repair.
Eur. J. Radiol. 57: 3-8.
Pak, J. 2011. Regeneration
of human bones in hip osteonecrosis and human cartilage in knee
osteoarthritis with autologous adipose tissue-derived stem cells:
A case series. Journal of Medical Case Reports 5: 296.
Perera, J.R., Gikas,
P.D. & Bentley, G. 2012. The present state of treatments for
articular cartilage defects in the knee. Annals 94(6):
381-387.
Jüni, P., Hari,
R., Rutjes, A.W.S., Fisher, R., Silletta, M.G., Reichenbach, S.
& da Costa, B.R. 2015. Intra-articular Corticosteroid for
Knee Osteoarthritis. Cochrane Musculoskeletal Group: John
Wiley and Sons Ltd. doi: 10.1002/14651858.cd005328.
Pharmaceutical
Services, Ministry of Health, Malaysia, Sale of Drug Act 1952
and Regulation. www.pharmacy.gov.my. Accessed on 22 February 2017.
Pinczewski, L.,
Hui, C. & Salmon, L. 2012. Long term survival of high tibial
osteotomy for medial osteoarthritis of the knee: 8- to 19-year
follow-up in a series of 455 patients. Orthopaedic Proceedings
94 B 29:11. doi: 10.1016/j.jsams.2010.10.471.
Qu, C., Puttonen,
K.A. & Lindeberg, H. 2013. Chondrogenic differentiation of
human pluripotent stem cells in chondrocyte co-culture. Int.
J. Biochem. Cell Biol. 45(8): 1802-1812.
Ranawat, C.S.,
Insall, J. & Shine, J. 1976. Duo-condylar knee arthroplasty:
Hospital for special surgery design. Clin. Orthop. Relat. Res.
120: 76-82.
Raveendhara, R.B.,
Christopher, H.S. & David, M.K. 2015. Comparative effectiveness
of pharmacologic interventions for knee osteoarthritis: A systematic
review and network meta-analysis. Ann. Intern. Med. 162(1):
46-54.
Riedhammer, C.,
Halbritter, D. & Weissert, R. 2016. Peripheral blood mononuclear
cells: Isolation, freezing, thawing, and culture. Methods Mol.
Biol. 1304: 53-61.
Rodrigo, J.J.,
Steadman, R.J. & Silliman, J.F. 1994. Improvement of full
thickness chondral defect healing in the human knee after debridement
and microfracture using continuous passive motion. Am. J. Knee
Surg. 7: 109-116.
Russlies, M., Behrens,
P., Wünsch, L., Gille, J. & Ehlers, E-M. 2002. A cell-seeded
biocomposite for cartilage repair. Ann. Anat. 184: 317-323.
Ruszymah, B.H.I.,
Arpah, A. & Fazillahnor, A.R. 2015. Clinical translation of
cell therapy, tissue engineering and regenerative medicine product
in Malaysia and its regulatory policy. Tissue Engineering:
Part A 21: 23-24.
Sakai, D., Schol,
J., Foldager, C.B., Sato, M. & Watanabe, M. 2017. Regenerative
technologies to bed side: Evolving the regulatory framework. Journal
of Orthopaedic Translation 9: 1-7. http://dx.doi.org/10.1016/j.jot.2017.02.001.
Saris, D.B., Vanlauwe,
J. & Victor, J. 2008. Characterized chondrocyte implantation
results in better structural repair when treating symptomatic
cartilage defects of the knee in a randomized controlled trial
versus microfracture. Am. J. Sports Med. 36(2): 235-246.
Saw, K-Y., Adam,
A. & Shahrin, M. 2011. Articular cartilage regeneration with
autologous peripheral blood progenitor cells and hyaluronic acid
after arthroscopic subchondral drilling: A report of 5 cases with
histology. Arthroscopy: The Journal of Arthroscopic & Related
Surgery 27(4): 493-506.
Saw, K.Y., Hussin,
P. & Loke, S.C. 2009. Articular cartilage regeneration with
autologous marrow aspirate and hyaluronic acid: An experimental
study in a goat model. Arthroscopy 25(12): 1391-1400.
Scott, R.M., Brock,
D.F., Stephanie, S.N., Rodney, D.T., Jeffre, C.W. & Frank,
A.P. 2014. Trends in the surgical treatment of articular cartilage
defects of the knee in the United States. Knee Surg. Sports
Traumatol. Arthrosc. 22: 2070-2075.
Seet, W.T., Ahmad,
I. & Manira, M. 2013. Quality management of a GMP laboratory
for human cell and tissue therapy: Our experience in UKM Medical
Centre. Regenerative Research 2(1): 50-54.
Song, E.K., Seon,
J.K. & Moon, J.Y. 2013. The evolution of modern total knee
prostheses. In Arthroplasty - Update. InTech. pp.
183-195. http://dx.doi.org/10.5772/56149.
Spahn, G., Hofmann,
G.O. & Engelhardt, V.L.V. 2016. Mechanical debridement versus
radiofrequency in knee chondroplasty with concomitant medial meniscectomy
10-years result from a randomized controlled study. Knee Surg.
Sports Traumatol. Arthrosc. 24(5): 1560-1568.
Steadman, J.R.,
Briggs, K.K. & Rodrigo, J.J. 2003. Outcomes of microfracture
for traumatic chondral defects of the knee: Average 11-year follow-up.
Arthroscopy 19: 477-484.
Stone, K.R., Walgenbach,
AW. & Freyer, A. 2006. Articular cartilage paste grafting
to full-thickness articular cartilage knee joint lesions: A 2-
to 12-year follow-up. Arthroscopy 22: 291-299.
Toh, W.S., Lee,
E.H., Guo, X.M., Chan, J.K.Y., Yeow, C.H., Choo, A.B. & Cao,
T. 2010. Cartilage repair using hyaluronan hydrogel-encapsulated
human embryonic stem cell-derived chondrogenic cells. Biomaterials
31(27): 6968-6980.
Tomita, T., Hashimoto,
H. & Tomita, N. 1997. In vivo direct gene transfer
into the articular cartilage by intraarticular injection mediated
by HVJ (Sendai virus) and liposomes. Arthritis Rheum. 40:
901-906.
Tuan, R.S. 2007.
A second-generation autologous chondrocyte implantation approach
to the treatment of focal articular cartilage defects. Arthritis
Research & Therapy 9: 109. https:// doi.org/10.1186/ar2310.
Ude, C.C., Ng,
M.H., Chen, C.H., Htwe, O., Amaramalar, N.S., Hassan, S. &
Ruszymah B.H.I. 2015. Improved functional assessment of osteoarthritic
knee joint after chondrogenically induced cell treatment. Osteoarthritis
and Cartilage 23: 1294-1306.
Ude, C.C., Sulaiman,
S.B., Min-Hwei, N., Hui-Cheng, C., Ahmad, J., Yahaya, N.M. &
Ruszymah, B.H.I. 2014. Cartilage regeneration by chondrogenic
induced adult stem cells in osteoarthritic sheep model. PloS
One 9: 6e98770.
Vanlauwe, J.E.,
Claes, T. & Van Assche, D. 2012. Characterized chondrocyte
implantation in the patellofemoral joint: An up to 4-year follow-up
of a prospective cohort of 38 patients. Am. J. Sports Med.
40: 1799.
Vats, A., Bielby,
R. & Tolley, N. 2006. Chondrogenic differentiation of human
embryonic stem cells: The effect of the micro-environment. Tissue
Engineering 12(6). https:// doi.org/10.1089/ten.2006.12.1687.
Walldius, B. 1957.
Arthroplasty of the knee joint using an endoprosthesis. Acta
Orthop. Scand. 28: 1-112. doi: 10.3109/ ort.1957.28.suppl-24.01.
Wang, D.A., Varghese,
S. & Sharma, B. 2007. Multifunctional chondroitin sulphate
for cartilage tissue-biomaterial integration. Nat. Mater. 6:
385-392.
Wayne Lee, Y-W. & Wang, B. 2017.
Cartilage repair by mesenchymal stem cells: Clinical trial update
and perspectives. Journal of Orthopaedic Translation 9:
76e88 http://dx.doi. org/10.1016/j.jot.2017.03.005.
Williams, S.K., Amiel, D. & Ball,
S.T. 2007. Analysis of cartilage tissue on a cellular level in
fresh osteochondral allograft retrievals. Am. J. Sports Med.
35: 2022-2032.
Zuk, P.A., Zhu,
M. & Peter, A. 2002. Human adipose tissue is a source of multipotent
stem cells. Molecular Biology of the Cell 13: 4279-4295.
Zur Nieden, N.I.,
Kempka, G. & Rancourt, D.E. 2005. Induction of chondro, osteo
and adipogenesis in embryonic stem cells by bone morphogenetic
protein-2: Effect of cofactors on differentiating lineages. BMC
Developmental Biology 5:1 doi: 10.1186/1471-213X-5-1.
*Pengarang untuk surat-menyurat; email: ruszyidrus@gmail.com