Sains Malaysiana 47(11)(2018): 2757–2767

http://dx.doi.org/10.17576/jsm-2018-4711-18

 

Strides towards the Realization of Cure for Cartilage Defects and Osteoarthritis: The Limitation and Regulatory Challenges

(Kemajuan ke Arah Merealisasikan Perubatan bagi Kecacatan Tulang Rawan dan Osteoartitis: Had dan Cabaran Pengawalan)

 

UDE CHINEDU CLETUS1, AZIZI MISKON1 & RUSZYMAH BT HJ IDRUS2*

 

1Bio-artifical Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Physiology, Medical Faculty National University of Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 25 Mac 2018/Diterima: 30 Julai 2018

 

ABSTRACT

Despite remarkable mechanical durability and strength, hyaline cartilage has very limited capacity for self-repair when injured and over time, may degenerate to osteoarthritis. We evaluated the most significant mile stones attained, in the pursuit of cure for cartilage defects and osteoarthritis. The basic treatment options include: Natural or physical therapy, medications, nutritional supplements, nutriceuticals and chondroprotective agents. Next are repairs and replacements, which include surgical procedures: Debridement/chondroplasty, microfracturing, mosaicplasty, periosteum transplantation, osteochondral autografting and allografting, high tibial osteotomy and total knee arthroplasty. But, current trend has shifted from repair, replacement, to most recently regeneration. Regenerations include the cell and gene therapies. While cell therapy involves the use of cells isolated from different tissues to cause regeneration of cartilage; gene therapy involves the selection of appropriate gene and optimal vector to incorporate cDNA. There has been much positivity reported with big animal models, which has led to several ongoing clinical trials. Translations of these findings hold high promises, though not without inherent regulatory hurdles. Considering the initial success rates, there are increasing hopes of realizing these treatments from bench to bedsides. Significant improvements in the treatment of cartilage degenerations and osteoarthritis have been made so far, but no gold standard delineated.

 

Keywords: Cartilage defects; cell therapy; osteoarthritis; tissue engineering

 

ABSTRAK

Meskipun mempunyai kekuatan dan ketahanan mekanik yang luar biasa, rawan hialin mempunyai kapasiti yang terhad untuk memulih sendiri apabila tercedera serta akan merosot kepada osteoartitis. Penilaian bagi langkah paling berkesan telah dilakukan dalam usaha mengubati kecacatan rawan dan osteoartitis. Rawatan asas termasuk: terapi semula jadi atau fizikal, ubat-ubatan, pemakanan tambahan, nutriseutis dan agen kondropelindung. Selepas itu adalah pembaikan dan penggantian melalui pembedahan: Debridemen/kondroplasti, mikropatah, mozaikplasti, pemindahan periosteum, autocantuman dan alocantuman osteokondral, osteotomi tibial tinggi dan jumlah artroplasti lutut. Namun, trend terbaru beralih daripada pembaikan dan penggantian kepada penjanaan semula. Penjanaan semula termasuk terapi sel dan gen. Terapi sel melibatkan penggunaan sel-sel yang diasingkan daripada tisu yang berbeza untuk penjanaan semula rawan manakala terapi gen pula melibatkan pemilihan gen yang sesuai dan vektor optimum untuk menggabungkan cDNA. Banyak laporan positif telah diperoleh dengan menggunakan model haiwan yang besar lantas menggalakkan beberapa ujian klinikal secara berterusan. Penemuan ini menunjukkan potensi yang tinggi, meskipun terdapat cabaran kawalan yang perlu dihadapi. Berdasarkan kadar kejayaan awal, rawatan ini perlu dipertimbangkan ke tahap yang lebih tinggi. Kemajuan yang ketara dalam rawatan penjanaan semula rawan dan osteoartitis telah dapat dilihat setakat ini, tetapi tidak ada piawaian emas yang ditandakan.

 

Kata kunci: Kecacatan rawan; kejuruteraan tisu; osteoartitis; terapi sel

RUJUKAN

Al Faqeh, H., Yahya, N.M., Chen, C.H., Saim, A.B. & Idrus, R.B.H. 2012. The potential intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Experimental Gerontology 47: 458-464.

Aroen, A., Sverre, L. & Stig, H. 2004. Articular cartilage lesions in 993 consecutive knee arthroscopie. The American Journal of Sports Medicine 32(1): 211-215.

Ball, S.T., Amiel, D. & Williams, S.K. 2004. The effect of storage on fresh human osteochondral allografts. Clinical Orthopedics and Related Research 418: 246-252.

Beerheide, W., Von Mach, M.A. & Ringel, M. 2002. Downregulation of beta2-microglobulin in human cord blood somatic stem cells after transplantation into livers of SCID-mice: An escape mechanism of stem cells? Biochem. Biophys. Res. Commun. 294: 1052-1063.

Bobic, V. 1996. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: A preliminary clinical study. Knee Surg. Sports Traumatol. Arthrosc. 3: 262-264.

Brittberg, M., Lindahl, A. & Nilsson, A. 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331: 889-895.

Bruce, M.J., Kimberly, O. & Nancy, J.P. 2002. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347(2): 81-88.

Coventry, M.B. 1965. Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee: A preliminary report. J. Bone. Joint Surg. Am. 47(5): 984-990.

David, T.F., Anthony, C.R. & Graham, J.C. 2016. Recommendations for the conduct of efficacy trials of treatment devices for osteoarthritis: A report from a working group of the Arthritis Research UK Osteoarthritis and Crystal Diseases Clinical Studies Group. Rheumatology 55(2): 320- 326.

Ding, C., Cicuttini, F., Scott, F., Cooley, H., Boon, C. & Jones, G. 2006. Natural history of knee cartilage defects and factors affecting change. Arch. Int. Med. 166: 651-658.

Dragoo, J.L., Carlson, G. & Mccormick, F. 2007. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Engineering 13(7): 1615-1621.

Ehlers, E-M., Fuss, M. & Rohwedel, J. 1999. Development of a bio-composite to fill out articular cartilage lesions: Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge. Ann. Anat. 181: 513-518.

Estes, B.T., Diekman, B.O. & Gimbe, J.F. 2010. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols 5(7): 1294-1311.2765

Evans, C.H., Ghivizzani, S.C. & Smith, P. 2000. Using gene therapy to protect and restore cartilage. Clinical Orthopaedics & Related Research 379: S214-S219.

Ferguson, W. 1861. Excision of the knee joint: Recovery with a false joint and a useful limb. Med. Times Gaz.

Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L. & Tenen, A. 2016. Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy - A review. BMC Musculoskeletal Disorders 17: 230. doi 10.1186/s12891-016-1085-9.

Gelse, K., von der Mark, K. & Schneider, H. 2003. Cartilage regeneration by gene therapy. Curr. Gene Ther. 3: 305-317.

Grande, D.A., Pitman, M.I. & Peterson, L. 1989. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte implantation. J. Orthop. Res. 7: 208 -218.

Gudas, R., Kelesinskas, R.J. & Kimtys, V. 2005. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy: The Journal of Arthroscopic & Related Surgery 21(9): 1066-1075.

Gunston, F.H. 1971. Polycentric knee arthroplasty: Prosthetic simulation of normal knee movement. J. Bone Joint Surg. Br. 53: 272-277.

Ha, C.W., Noh, M.J., Choi, K.B. & Lee, K.H. 2012. Initial Phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14: 247-256.

Haddo, O., Mahroof, S. & Higgs, D. 2004. The use of chondrogide membrane in autologous chondrocyte implantation. Knee 11: 51-55.

Hangody, L. & Fule, P. 2003. Autologous osteochondral mosaicplasty for the treatment of full thickness defects of weight bearing joints: Ten years of experimental and clinical experience. J. Bone Joint Surg. Am. 85(2): 25-32.

Hu, G., Xu, J.J., Deng, Z.H., Feng, J. & Jin, Y. 2011. Supernatant of bone marrow mesenchymal stromal cells induces peripheral blood mononuclear cells possessing mesenchymal features. Int. J. Biol. Sci. 7(3): 364-375.

Kenton, H.F., Howard, J.H. & Brian, C.H. 2015. State-of-the-art management of knee osteoarthritis. World J. Clin. Cases 3(2): 89-101.

Kim, D., Staples, M. & Shinozuka, K. 2013. Wharton’s Jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int. J. Mol. Sci. 14: 11692-11712.

Kim, H.J. & Im, G.I. 2009. Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: Greater doses of growth factor are necessary. J. Orthop. Res. 27(5): 612-619.

Kim, Y.S., Park, E.H. & Lee, H.J. 2012. Clinical comparison of the osteochondral autograft transfer system and subchondral drilling in osteochondral defects of the first metatarsal head. Am. J. Sports Med. 40(8): 1824-1833.

Knoepfler, P.S. 2015. From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Advanced Drug Delivery Reviews 82-83: 192-196.

Knutsen, G., Engebretsen, L. & Ludvigsen, T.C. 2004. Autologous chondrocyte implantation compared with microfracture in the knee: A randomized trial. J. Bone Joint Surg. Am. 86(3): 455-464.

Kocher, A.A., Schuster, M.D. & Szabolcs, M.J. 2001. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodelling and improves cardiac function. Nat. Med. 7: 430-436.

Kohn, L., Sauerschnig, M. & Iskansar, S. 2013. Age does not influence the clinical outcome after high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 21(1): 146-151.

Kong, L., Zheng, Lz., Qin, L. & Ho, K.K.W. 2017. Role of mesenchymal stem cells in osteoarthritis treatment. Journal of Orthopaedic Translation 9: 89e103 http://dx.doi. org/10.1016/j.jot.2017.03.006.

Kurtz, S., Ong, K. & Lau, E. 2007. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 89(4): 780-785.

Lexar, E. 1908. Substitution of whole or half joints from freshly amputated extremities by free plastic operation. Surg. Gynecol. Obstet. 6: 601-607.

Lim, J., Zainul, R.M.R. & Law, J. 2016. MSCS can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18: 1493-1502.

Liu, S., Jia, Y. & Yuan, M. 2017. Repair of osteochondral defects using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in a rabbit model. BioMed Research International 2017: 8760383. https://doi. org/10.1155/2017/8760383.

Magnusson, P.B. 1946. Technique of debridement of the knee joint for arthritis. Surg. Clin. North Am. 26: 226-249.

Marlene, F., Maria, A. & Lillias, N. 2015. Glucosamine and chondroitin for knee osteoarthritis: A double-blind randomized placebo-controlled clinical trial evaluating single and combination regimens. Ann. Rheum. Dis. 74: 851-858.

Martel-Pelletier, J., Camille, R. & François, A. 2015. First-line analysis of the effects of treatment on progression of structural changes in knee osteoarthritis over 24 months: Data from the osteoarthritis initiative progression cohort. Ann. Rheum. Dis. 74: 547-556.

Mathew, A.P., Augustine, R., Kalarikkal, N. & Thomas, S. 2016. Tissue engineering: Principles, recent trends and the future. Nanomedicine and Tissue Engineering: State of the Art and Recent Trends. New York: Apple Academic Press. pp 31-82.

McAdams, T.R., Mithoefer, K., Jason, M.S. & Mandelbaum, B.R. 2010. Articular cartilage injury in athletes. Cartilage 1(3): 165-179.

McAlindon, T.E., LaValley, M.P. & Gulin, J.P. 2000. Glucosamine and chondroitin for treatment of osteoarthritis: A systematic quality assessment and meta-analysis. JAMA 283: 1469-1475.

Messier, S.P., Loeser, R.F. & Mitchell, M.N. 2000. Exercise and weight loss in obese older adults with knee osteoarthritis: A preliminary study. J. Am. Geriatr. Soc. 48: 1062-1072.

Mithoefer, K., Lars, P. & Marcy, Z.W. 2015. Cartilage issues in football-today’s problems and tomorrow’s solutions. Br. J. Sports Med. 49: 590-596.

Mithofer, K., Peterson, L. & Mandelbaum, B.R. 2005. Articular cartilage repair in soccer players with autologous chondrocyte transplantation: Functional outcome and return to competition. Am. J. Sports Med. 33: 1639-1646.

Munirah, S., Aminuddin, B.S., Samsudin, O.C., Chua, K.H. & Fuzina, N.H. 2005. The re-expression of Collagen II, Aggrecan and SOX9 in tissue engineered human articular cartilage. Tissue Engineering and Regenerative Medicine 2(4): 347-355.

Murphy, J.M., Fink, D.J., Hunziker, E.B. & Barry, F.P. 2003. Stem cell therapy in a caprine model of osteoarthritis. Arthritis & Rheumatism 48(12): 3464-3474.

Nehrer, S., Domayer, S. & Dorotka, R. 2006. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol. 57: 3-8.

Pak, J. 2011. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose tissue-derived stem cells: A case series. Journal of Medical Case Reports 5: 296.

Perera, J.R., Gikas, P.D. & Bentley, G. 2012. The present state of treatments for articular cartilage defects in the knee. Annals 94(6): 381-387.

Jüni, P., Hari, R., Rutjes, A.W.S., Fisher, R., Silletta, M.G., Reichenbach, S. & da Costa, B.R. 2015. Intra-articular Corticosteroid for Knee Osteoarthritis. Cochrane Musculoskeletal Group: John Wiley and Sons Ltd. doi: 10.1002/14651858.cd005328.

Pharmaceutical Services, Ministry of Health, Malaysia, Sale of Drug Act 1952 and Regulation. www.pharmacy.gov.my. Accessed on 22 February 2017.

Pinczewski, L., Hui, C. & Salmon, L. 2012. Long term survival of high tibial osteotomy for medial osteoarthritis of the knee: 8- to 19-year follow-up in a series of 455 patients. Orthopaedic Proceedings 94 B 29:11. doi: 10.1016/j.jsams.2010.10.471.

Qu, C., Puttonen, K.A. & Lindeberg, H. 2013. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int. J. Biochem. Cell Biol. 45(8): 1802-1812.

Ranawat, C.S., Insall, J. & Shine, J. 1976. Duo-condylar knee arthroplasty: Hospital for special surgery design. Clin. Orthop. Relat. Res. 120: 76-82.

Raveendhara, R.B., Christopher, H.S. & David, M.K. 2015. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: A systematic review and network meta-analysis. Ann. Intern. Med. 162(1): 46-54.

Riedhammer, C., Halbritter, D. & Weissert, R. 2016. Peripheral blood mononuclear cells: Isolation, freezing, thawing, and culture. Methods Mol. Biol. 1304: 53-61.

Rodrigo, J.J., Steadman, R.J. & Silliman, J.F. 1994. Improvement of full thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am. J. Knee Surg. 7: 109-116.

Russlies, M., Behrens, P., Wünsch, L., Gille, J. & Ehlers, E-M. 2002. A cell-seeded biocomposite for cartilage repair. Ann. Anat. 184: 317-323.

Ruszymah, B.H.I., Arpah, A. & Fazillahnor, A.R. 2015. Clinical translation of cell therapy, tissue engineering and regenerative medicine product in Malaysia and its regulatory policy. Tissue Engineering: Part A 21: 23-24.

Sakai, D., Schol, J., Foldager, C.B., Sato, M. & Watanabe, M. 2017. Regenerative technologies to bed side: Evolving the regulatory framework. Journal of Orthopaedic Translation 9: 1-7. http://dx.doi.org/10.1016/j.jot.2017.02.001.

Saris, D.B., Vanlauwe, J. & Victor, J. 2008. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36(2): 235-246.

Saw, K-Y., Adam, A. & Shahrin, M. 2011. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: A report of 5 cases with histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery 27(4): 493-506.

Saw, K.Y., Hussin, P. & Loke, S.C. 2009. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: An experimental study in a goat model. Arthroscopy 25(12): 1391-1400.

Scott, R.M., Brock, D.F., Stephanie, S.N., Rodney, D.T., Jeffre, C.W. & Frank, A.P. 2014. Trends in the surgical treatment of articular cartilage defects of the knee in the United States. Knee Surg. Sports Traumatol. Arthrosc. 22: 2070-2075.

Seet, W.T., Ahmad, I. & Manira, M. 2013. Quality management of a GMP laboratory for human cell and tissue therapy: Our experience in UKM Medical Centre. Regenerative Research 2(1): 50-54.

Song, E.K., Seon, J.K. & Moon, J.Y. 2013. The evolution of modern total knee prostheses. In Arthroplasty - Update. InTech. pp. 183-195. http://dx.doi.org/10.5772/56149.

Spahn, G., Hofmann, G.O. & Engelhardt, V.L.V. 2016. Mechanical debridement versus radiofrequency in knee chondroplasty with concomitant medial meniscectomy 10-years result from a randomized controlled study. Knee Surg. Sports Traumatol. Arthrosc. 24(5): 1560-1568.

Steadman, J.R., Briggs, K.K. & Rodrigo, J.J. 2003. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy 19: 477-484.

Stone, K.R., Walgenbach, AW. & Freyer, A. 2006. Articular cartilage paste grafting to full-thickness articular cartilage knee joint lesions: A 2- to 12-year follow-up. Arthroscopy 22: 291-299.

Toh, W.S., Lee, E.H., Guo, X.M., Chan, J.K.Y., Yeow, C.H., Choo, A.B. & Cao, T. 2010. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31(27): 6968-6980.  

Tomita, T., Hashimoto, H. & Tomita, N. 1997. In vivo direct gene transfer into the articular cartilage by intraarticular injection mediated by HVJ (Sendai virus) and liposomes. Arthritis Rheum. 40: 901-906.

Tuan, R.S. 2007. A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects. Arthritis Research & Therapy 9: 109. https:// doi.org/10.1186/ar2310.

Ude, C.C., Ng, M.H., Chen, C.H., Htwe, O., Amaramalar, N.S., Hassan, S. & Ruszymah B.H.I. 2015. Improved functional assessment of osteoarthritic knee joint after chondrogenically induced cell treatment. Osteoarthritis and Cartilage 23: 1294-1306.

Ude, C.C., Sulaiman, S.B., Min-Hwei, N., Hui-Cheng, C., Ahmad, J., Yahaya, N.M. & Ruszymah, B.H.I. 2014. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9: 6e98770.

Vanlauwe, J.E., Claes, T. & Van Assche, D. 2012. Characterized chondrocyte implantation in the patellofemoral joint: An up to 4-year follow-up of a prospective cohort of 38 patients. Am. J. Sports Med. 40: 1799.

Vats, A., Bielby, R. & Tolley, N. 2006. Chondrogenic differentiation of human embryonic stem cells: The effect of the micro-environment. Tissue Engineering 12(6). https:// doi.org/10.1089/ten.2006.12.1687.

Walldius, B. 1957. Arthroplasty of the knee joint using an endoprosthesis. Acta Orthop. Scand. 28: 1-112. doi: 10.3109/ ort.1957.28.suppl-24.01.

Wang, D.A., Varghese, S. & Sharma, B. 2007. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6: 385-392.

Wayne Lee, Y-W. & Wang, B. 2017. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. Journal of Orthopaedic Translation 9: 76e88 http://dx.doi. org/10.1016/j.jot.2017.03.005.

Williams, S.K., Amiel, D. & Ball, S.T. 2007. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am. J. Sports Med. 35: 2022-2032.

Zuk, P.A., Zhu, M. & Peter, A. 2002. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 13: 4279-4295.

Zur Nieden, N.I., Kempka, G. & Rancourt, D.E. 2005. Induction of chondro, osteo and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: Effect of cofactors on differentiating lineages. BMC Developmental Biology 5:1 doi: 10.1186/1471-213X-5-1.

 

*Pengarang untuk surat-menyurat; email: ruszyidrus@gmail.com

 

 

 

 

 

 

sebelumnya