Sains Malaysiana 47(12)(2018): 2993–3002
http://dx.doi.org/10.17576/jsm-2018-4712-08
Reconstruction of the Transcriptional
Regulatory Network in Arabidopsis thaliana Aliphatic Glucosinolate
Biosynthetic Pathway
(Pembinaan Semua Jaringan Pengawal Atur Transkripsi
Tapak Jalan Biosintesis
Glukosinolat Alifatik dalam Arabidopsis
thaliana)
KHALIDAH-SYAHIRAH ASHARI1, MUHAMMAD-REDHA ABDULLAH-ZAWAWI2, SARAHANI HARUN2 & ZETI-AZURA MOHAMED-HUSSEIN1,2*
1Centre for Frontier Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre for Bioinformatics Research, Institute of Systems
Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 30 Mei 2018 /Diterima: 19 September
2018
ABSTRACT
Aliphatic glucosinolate is an
important secondary metabolite responsible in plant defense mechanism and
carcinogenic activity. It plays a crucial role in plant adaptation towards
changes in the environment such as salinity and drought. However, in many plant
genomes, there are thousands of genes encoding proteins still with putative
functions and incomplete annotations. Therefore, the genome of Arabidopsis
thaliana was selected to be investigated further to identify any putative
genes that are potentially involved in the aliphatic glucosinolate biosynthesis
pathway, most of its gene are with incomplete annotation. Known genes for
aliphatic glucosinolates were retrieved from KEGG and
AraCyc databases. Three co-expression databases i.e., ATTED-II,
GeneMANIA and STRING were used to perform the
co-expression network analysis. The integrated co-expression network was then
being clustered, annotated and visualized using Cytoscape plugin, MCODE and ClueGO. Then, the regulatory network of A. thaliana from
AtRegNet was mapped onto the co-expression network to build the transcriptional
regulatory network. This study showed that a total of 506 genes were
co-expressed with the 61 aliphatic glucosinolate biosynthesis genes. Five
transcription factors have been predicted to be involved in the biosynthetic
pathway of aliphatic glucosinolate, namely SEPALLATA 3
(SEP3), PHYTOCHROME
INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15)
and GLABRA 3 (GL3). Meanwhile, three other
genes with high potential to be involved in the aliphatic glucosinolates
biosynthetic pathway were identified, i.e., methylthioalkylmalate-like synthase
4 (MAML-4) and aspartate aminotransferase (ASP1
and ASP4). These findings can be used to complete the
aliphatic glucosinolate biosynthetic pathway in A. thaliana and to
update the information on the glucosinolate-related pathways in public
metabolic databases.
Keywords: Aliphatic glucosinolate
biosynthesis; co-expression analysis; regulatory network
ABSTRAK
Glukosinolat alifatik merupakan metabolit
sekunder penting di dalam mekanisme pertahanan tumbuhan dan aktiviti
karsinogen. Glukosinolat juga penting di dalam penyesuaian terhadap
persekitaran seperti kemasinan dan kemarau. Namun begitu dalam
kebanyakan genom tumbuhan, masih banyak fungsi gen yang mengekod
protein adalah putatif dan tidak lengkap. Oleh itu, genom Arabidopsis thaliana telah dipilih
untuk dikaji dengan lebih mendalam untuk mengenal pasti gen putatif
yang berpotensi terlibat di dalam tapak jalan biosintesis glukosinolat
alifatik. Gen biosintetik glukosinolat alifatik telah dikumpul
daripada pangkalan data KEGG dan AraCyc manakala pangkalan data ATTED-II,
GeneMANIA dan STRING digunakan dalam analisis
pengekspresan bersama. Integrasi jaringan pengekspresan bersama
telah dilakukan dengan menggunakan perisian Cytoscape, MCODE dan ClueGO. Kesemua gen
pengekspresan bersama yang terlibat dipetakan menggunakan set
data jaringan pengawal atur daripada pangkalan data AtRegNet.
Hasil kajian ini berjaya mengenal pasti 506 gen yang telah diekspreskan
bersama dengan 61 gen biosintetik glukosinolat alifatik. Lima
faktor transkripsi telah berjaya dikenal pasti dan didapati terlibat
di dalam mengawal atur biosintetis glukosinolat alifatik iaitu
SEPALLATA 3 (SEP3),
PHYTOCHROME
INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL
5 (HY5), AGAMOUS-like 15 (AGL15)
dan GLABRA 3 (GL3). Kajian ini mengukuhkan lagi penglibatan
gen berpotensi di dalam tapak jalan biosintesis glukosinolat alifatik
melalui penemuan gen methylthioalkylmalate-like synthase 4 (MAML-4)
dan aspartate aminotransferase (ASP4 dan ASP1)
menggunakan kaedah yang telah dijalankan.
Kata
kunci: Analisis pengekspresan bersama; biosintesis glukosinolat alifatik;
jaringan pengawal atur
RUJUKAN
Atwell, L.L., Beaver, L.M., Shannon, J.,
Williams, D.E., Dashwood, R.H. & Ho, E. 2015. Epigenetic regulation by
sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Current
Pharmacology Reports 1(2): 102-111.
Bader, G.D. & Hogue, C.W. 2003. An
automated method for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics 4(1): 2.
Beekwilder, J., Van Leeuwen, W., Van Dam,
N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados,
L., Molthoff, J.W., Schipper, B. & Verbocht, H. 2008. The
impact of the absence of aliphatic glucosinolates on insect herbivory
in Arabidopsis. PLoS ONE 3(4): 1-12.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong,
P., Tosolini, M., Kirilovsky, A., Fridman, W., Pagès, F.,
Trajanoski, Z., Galon, J., Team, A., Immunology, I.C. & Descartes,
U.P. 2009. ClueGO: A Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks. Bioinformatics
25(8): 1091-1093.
Binder, S. 2010. Branched-chain amino acid
metabolism in Arabidopsis thaliana. The Arabidopsis Book e0137:
1-14.
Bradbury, L.M.T., Niehaus, T.D. &
Hanson, A.D. 2013. Comparative genomics approaches to understanding and
manipulating plant metabolism. Current Opinion in Biotechnology 24:
278-284.
Cao, F.Y., Yoshioka, K. & Desveaux, D.
2011. The roles of ABA in plant-pathogen interactions. Journal of Plant
Research 124(4): 489-499.
Cluis, C.P., Mouchel, C.F. & Hardtke,
C.S. 2004. The Arabidopsis transcription factor HY5 integrates
light and hormone signaling pathways. The Plant Journal 38(2):
332-347.
Farrow, S.C. & Facchini, P.J. 2014.
Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant
metabolism. Frontiers in Plant Science 5(October): 1-15.
Field, B., Furniss, C., Wilkinson, A.
& Mithen, R. 2006. Expression of a Brassica isopropylmalate synthase gene
in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant
Molecular Biology 60(5): 717-727.
Frerigmann, H., Bottcher, C., Baatout, D.
& Gigolashvili, T. 2012. Glucosinolates are produced in trichomes of Arabidopsis
thaliana. Frontiers in Plant Science 3: 242.
Grubb, C.D. & Abel, S. 2006.
Glucosinolate metabolism and its control. Trends in Molecular Medicine 11(2):
89-100.
Halkier, B.A. & Gershenzon, J. 2006.
Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:
303- 333.
Hopkins, R.J., van Dam, N.M. & van
Loon, J.J.A. 2009. Role of glucosinolates in insect-plant relationships and
multitrophic interactions. Annual Review of Entomology 54: 57-83.
Hundertmark, M. & Hincha, D.K. 2008.
LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis
thaliana. BMC Genomics 9: 118.
Ishida, M., Hara, M., Fukino, N.,
Kakizaki, T. & Morimitsu, Y. 2014. Glucosinolate metabolism, functionality
and breeding for the improvement of Brassicaceae vegetables. Breeding
Science 64: 48-59.
Kanehisa, M., Sato, Y., Kawashima, M.,
Furumichi, M. & Tanabe, M. 2016. KEGG as a reference resource for gene and
protein annotation. Nucleic Acids Research 44: D457-D462.
Kaufmann, K., Muiño, J.M., Jauregui,
R., Airoldi, C.A., Smaczniak, C., Krajewski, P. & Angenent,
G.C. 2009. Target genes of the MADS transcription factor sepallata3:
Integration of developmental and hormonal pathways in the Arabidopsis
flower. PLoS Biology 7(4): 0854-0875.
Kim, D.H., Yamaguchi, S., Lim, S., Oh, E.,
Park, J., Hanada, A., Kamiya, Y. & Choi, G. 2008. SOMNUS, a CCCH-Type zinc
finger protein in Arabidopsis, negatively regulates light-dependent seed
germination downstream of PIL5. The Plant Cell 20(5): 1260-1277.
Lächler, K., Imhof, J., Reichelt, M.,
Gershenzon, J. & Binder, S. 2015. The cytosolic branched-chain
aminotransferases of Arabidopsis thaliana influence methionine supply,
salvage and glucosinolate metabolism. Plant Molecular Biology 88(1-2):
119-131.
Lee, J.G., Lim, S., Kim, J. & Lee, E.J.
2017. The mechanism of deterioration of the glucosinolate-myrosynase system in
radish roots during cold storage after harvest. Food Chemistry 233:
60-68.
Li, Y., Pearl, S.A. &
Jackson, S.A. 2015. Gene networks in plant biology: Approaches in reconstruction
and analysis. Trends in Plant Science 20(10): 664-675.
Mao, L., Van Hemert, J.L., Dash, S. &
Dickerson, J.A. 2009. Arabidopsis gene co-expression network and its functional
modules. BMC Bioinformatics 10: 1-24.
Martínez-Ballesta, M., Moreno-Fernández,
D.A., Castejón, D., Ochando, C., Morandini, P.A. & Carvajal, M. 2015. The
impact of the absence of aliphatic glucosinolates on water transport under salt
stress in Arabidopsis thaliana. Frontiers in Plant Science 6(July):
1-12.
Miesak, B.H. & Coruzzi, G.M. 2002. Molecular
and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic
aspartate aminotransferase. Plant Physiology 129(2): 650-660.
Moon, J., Zhu, L., Shen, H. & Huq, E.
2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis
to optimize the greening process in Arabidopsis. Proceedings of the National Academy
of Sciences of the United States of America 105(27): 9433-9438.
Mostafa, I., Yoo, M.J., Zhu, N., Geng, S.,
Dufresne, C., Abou- Hashem, M., El-Domiaty, M. & Chen, S.
2017. Membrane proteomics of Arabidopsis glucosinolate mutants cyp79b2/b3 and myb28/29.
Frontiers in Plant Science 8(April).
Mueller, L.A., Zhang, P. & Rhee, S.Y.
2003. AraCyc: A biochemical pathway database for Arabidopsis. Plant Physiology 132: 453-460.
Neal, C.S., Fredericks, D.P., Griffiths,
C.A. & Neale, A.D. 2010. The characterisation of AOP2: A gene associated
with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis
thaliana. BMC Plant Biology 10: 1-16.
Nour-Eldin, H.H. & Halkier, B.A.
2009. Piecing together the transport pathway of aliphatic glucosinolates. Phytochemistry
Reviews 8(1): 53-67.
Nützmann, H.W., Huang, A. & Osbourn,
A. 2016. Plant metabolic gene clusters - from genetics to genomics. New
Phytologist 211(3): 771-789.
Obayashi, T., Kinoshita, K., Nakai, K.,
Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. & Ohta, H.
2007. ATTED-II: A database of co-expressed genes and cis elements for
identifying co-regulated gene groups in Arabidopsis. Nucleic Acids
Research 35: D863-D869.
Oh, E., Kang, H., Yamaguchi, S., Park,
J., Lee, D., Kamiya, Y. & Choi, G. 2009. Genome-wide analysis of genes
targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. The Plant Cell 21(2): 403-419.
Rameeh, V. 2015. Glucosinolates and their
important biological and anti cancer effects: A review. Jordan Journal of
Agricultural Sciences 11(1): 1-13.
Redovniković, I.R., Glivetic, T.,
Delonga, K. & Jasna Vorkapic- Furac. 2008. Glucosinolates and their
potential role in plant. Periodicum Biologorum 110(4): 297-309.
Redovniković, I.R., Textor, S.,
Lisni, B. & Gershenzon, J. 2012. Expression pattern of the glucosinolate
side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana in
different organs and developmental stages. Plant Physiology and Biochemistry 53: 77-83.
Rohr, F., Ulrichs, C. & Mewis, I.
2009. Variability of aliphatic glucosinolates in Arabidopsis thaliana (L.)
- Impact on glucosinolate profile and insect resistance. Journal of Applied
Botany and Food Quality 82(2): 131-135.
Roy, S., Bhattacharyya, D.K. &
Kalita, J.K. 2016. Analysis of gene expression patterns using biclustering. Methods
in Molecular Biology (Clifton, N.J.) 1375: 91-103.
Schuster, J., Knill, T., Reichelt, M.,
Gershenzon, J. & Binder, S. 2006. BRANCHED-CHAIN AMINOTRANSFERASE4 is part
of the chain elongation pathway in the biosynthesis of methionine-derived
glucosinolates in Arabidopsis. The Plant Cell 18: 2664-2679.
Seo, M. & Koshiba, T. 2002. Complex
regulation of ABA biosynthesis in plants. Trends in Plant Science 7(1):
41-48.
Serin, E.A.R., Nijveen, H., Hilhorst,
H.W.M. & Ligterink, W. 2016. Learning from co-expression networks:
Possibilities and challenges. Frontiers in Plant Science 7(444): 1-18.
Shannon, P., Markiel, A., Ozier, O.,
Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker,
T. 2003. Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Research 13(11): 2498-2504.
Smita, S., Katiyar, A., Chinnusamy, V.,
Pandey, D.M. & Bansal, K.C. 2015. Transcriptional regulatory network
analysis of myb transcription factor family genes in rice. Frontiers in
Plant Science 6(December): 1-19.
Sønderby, I.E., Geu-flores, F. &
Halkier, B.A. 2010. Biosynthesis of glucosinolates - gene discovery and beyond. Trends in Plant Science 15(5): 283-290.
Suryamohan, K. & Halfon, M. 2015.
Identifying transcriptional cis-regulatory modules in animal genomes. Wiley
Interdisciplinary Reviews. Developmental Biology 4(2): 59-84.
Szklarczyk, D., Morris, J.H., Cook, H.,
Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork,
P., Jensen, L.J. & von Mering, C. 2017. The STRING database in 2017:
Quality-controlled protein-protein association networks, made broadly
accessible. Nucleic Acids Research 45: D362-D368.
Textor, S., de Kraker, J.W., Hause, B.,
Gershenzon, J. & Tokuhisa, J.G. 2007. MAM3 catalyzes the formation of all
aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiology 144(1): 60-71.
Toledo-Ortiz, G., Johansson, H., Lee, K.P.,
Bou-Torrent, J., Stewart, K., Steel, G., Rodríguez-Concepción,
M. & Halliday, K.J. 2014. The HY5-PIF regulatory module coordinates
light and temperature control of photosynthetic gene transcription.
PLoS Genetics 10(6): e1004416.
van Dam, S., Võsa, U., van der Graaf, A.,
Franke, L. & de Magalhães, J.P. 2017. Gene co-expression analysis for
functional classification and gene-disease predictions. Briefings in
Bioinformatics (January): 1-18.
Wada, T., Kunihiro, A. &
Tominaga-Wada, R. 2014. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control
tomato (Solanum lycopersicum) anthocyanin biosynthesis. PLoS ONE 9(9):
e109093.
Warde-Farley, D., Donaldson, S.L., Comes,
O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C.,
Kazi, F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J.,
Shao, Q., Wright, G., Bader, G.D. & Morris, Q. 2010. The GeneMANIA
prediction server: Biological network integration for gene prioritization
and predicting gene function. Nucleic Acids Research 38:
W214-W220.
Yilmaz, A., Mejia-Guerra, M.K., Kurz, K.,
Liang, X., Welch, L. & Grotewold, E. 2011. AGRIS: The Arabidopsis gene
regulatory information server, an update. Nucleic Acids Research 39(SUPPL.
1): 1118-1122.
Yoshida, Y., Sano, R., Wada, T.,
Takabayashi, J. & Okada, K. 2009. Jasmonic acid control of GLABRA3 links
inducible defense and trichome patterning in Arabidopsis. Development 136(6): 1039-1048.
Zhang, Y., Liu, Z., Liu, R., Hao, H.
& Bi, Y. 2011. Gibberellins negatively regulate low temperature-induced
anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signaling and
Behavior 6(5): 632-634.
Zheng, Q., Zheng, Y. & Perry, S.E.
2013. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and
soybean in part by the control of ethylene biosynthesis and response. Plant
Physiology 161(4): 2113-2127.
*Pengarang untuk surat-menyurat; email: zeti.hussein@ukm.edu.my