Sains Malaysiana 47(2)(2018):
            377-386
              
          
              http://dx.doi.org/10.17576/jsm-2018-4702-20  
          
             
          
          Factors Affecting
            Cellulose Dissolution of Oil Palm Empty Fruit Bunch and Kenaf  Pulp in NaOH/Urea Solvent
  
          (Faktor
            Mempengaruhi Pelarutan Selulosa daripada Pulpa Tandan
              Kosong Kelapa Sawit dan Kenaf dalam Pelarut NaOH/Urea)
  
          
             
          
          Khairunnisa Waznah
            Baharin1, Sarani Zakaria1*, Amanda V. Ellis2, Noraini Talip3,
              Hatika Kaco1, Sinyee Gan1, Farrah Diyana Zailan4 & Sharifah Nurul Ain Syed Hashim1
  
          
             
          
          1Bioresources & Biorefinery
            Laboratory, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
              Ehsan, Malaysia
  
          
             
          
          2School of Chemical
            Engineering, University of Melbourne, Melbourne, Victoria, Australia
            
          
          
             
          
          3Microtechnique and
            Plant Anatomy Research Team, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
              Ehsan, Malaysia
  
          
             
          
          4School of Applied
            Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia
  
          43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
          
          
             
          
          Diserahkan: 5 Disember 2016/Diterima: 31 Julai 2017
            
          
          
             
          
          ABSTRACT
            
          
          The factors responsible for the low
            solubility percentage of oil palm empty fruit bunch (OPEFB) cellulose pulp
            compared to kenaf when dissolved in aqueous NaOH/urea solvent system was
            reported. Physical and chemical properties of both cellulose pulp were studied
            and compared in terms of the lignin content, viscosity average molecular weight
            (Mη), crystallinity index (CrI), cellulose pulp structure and their zero
            span tensile strength. The structure of both OPEFB and kenaf cellulose pulp
            were characterized using high powered microscope and field emission scanning
            electron microscopy (FESEM) assisted by ImageJ® software. The
              results show
                that the most significant factor that affected the OPEFB and kenaf cellulose
                dissolution in NaOH/-urea solvent was the Mη with OPEFB
                  having a higher Mη of 1.68×105 compared to 5.53 ×
                  104 for kenaf. Overall, kenaf cellulose appeared to be produced in
                  higher quantities presumably due to its lower molecular weight with superior
                  tensile strength and permeability in comparison to OPEFB.
  
          
             
          
          Keywords: Cell wall
            thickness; lumen size; solubility percentage; XRD  
  
           
          ABSTRAK
           
          Faktor
            menyebabkan peratus pelarutan selulosa tandan kosong kelapa sawit (TKKS) yang
            rendah berbanding selulosa kenaf apabila dilarutkan di dalam sistem pelarut
            akueus NaOH/urea dilaporkan. Sifat fizikal dan kimia selulosa dari pulpa TKKS
            dan kenaf  dikaji dan dibandingkan
            dari segi kandungan lignin, purata berat molekul (Mη), indeks penghabluran
            (CrI), struktur pulpa selulosa dan kekuatan tegangan zero-span. Struktur
            kedua-dua pulpa selulosa dilihat dan dikaji dengan menggunakan mikroskop
            berkuasa tinggi dan (FESEM) dibantu dengan perisian ImageJ®. Daripada pencirian
            yang telah dijalankan, faktor yang memberikan kesan paling signifikan kepada
            pelarutan selulosa adalah berat molekul pulpa memandangkan berat molekul pulpa
            OPEFB yang diperolehi adalah lebih tinggi daripada kenaf  dengan 1.68
  × 105 dan 5.53 × 104 masing-masing. Secara keseluruhannya,
    dianggarkan kandungan selulosa daripada kenaf adalah lebih tinggi disebabkan
    berat molekul yang rendah tetapi mempunyai kekuatan tegangan dan kebolehtelapan
    yang lebih baik daripada TKKS.  
  
          
             
          
          Kata
            kunci: Ketebalan
              dinding sel; peratus keterlarutan; saiz lumen; XRD  
  
          
             
          
          RUJUKAN
            
          
          Alves, L., Medronho, B., Antunes, F.E., Topgaard, D. & Lindman, B.
            2015. Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose. DOI 10.1007/s10570-015-0809-6.
  
          Cai, J. & Zhang,
            L. 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous 
     solutions. Macromolecular 41: 9345-9351.
  
          
          Cai, J., Liu, Y.
  & Zhang, L. 2006. Dilute solution properties of cellulose in LiOH/urea
            aqueous 
     system. Journal of Polymer Science Part B: Polymer Physics 44(21): 3093-3101.
  
          
          Ching, Y.C. & Ng, T.S. 2014. Effect of preparation conditions on
            cellulose from oil palm empty fruit bunch fiber. BioResources 9(4):
            6373-6385.
  
          
          Chinga-Carrasco, G., Solheim, O., Lenes, M. & Larsen, A. 2013. A
            method for estimating the fibre length in fibre-PLA composites. Journal of
              Microscopy 250: 15-20.
  
          
          Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J. & Thomas,
            S. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59: 27-34.
  
          
          Eichhorn, S.J., Baillie, C.A., Mwaikambo, L.Y., Ansell, M.P., Dufresne,
            A., Entwistle, K.M., Herrera, P.J., Escamilla, G.C., Groom, L., Hughes, M.,
            Hill, C., Rials, T.G. & Wild, P.M. 2001. Current international research
            into cellulosic fibers and composites. Journal of Materials Science 36: 2107-2131.
  
          Fengel, D. &
            Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Location: Walter de Gruyter & Co.,
              Berlin. pp. 1-174.
  
          Gan, S.Y., Zakaria,
            S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015a. Effect of hydrothermal
            pretreatment on solubility and formation of kenaf  cellulose membrane and hydrogel. Carbohydrate
              Polymers 115: 62-68.
  
          
          Gan, S.Y., Padzil,
            F.N.M., Zakaria, S., Chia, C.H., Syed Jaafar, S.N. & Chen, R.S. 2015b.
            Synthesis of liquid hot water cotton linter to prepare cellulose membrane using
            NaOH/urea or LiOH/urea. BioResources 10(2): 2244-2255.
  
          
          Gan, S.Y., Zakaria,
            S., Chia, C.H., Kaco, H. & Padzil, F.N.M. 2014. Synthesis of kenaf  cellulose carbamate using microwave
            irradiation for preparation of cellulose membrane. Carbohydrate Polymers 106: 160-165.
  
          
          Pulp & Paper
            Resource & Information Site. 2017. Properties of pulp.  http://www.paperonweb.com/pulppro.html. Accessed on 15 July 2017.
  
          Hartig,
            S.M. 2013. Basic image analysis and manipulation in image j. Current
              Protocols in Molecular Biology 102: 14.15.1-14.15.12.
  
          Kaco,
            H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014.
            Properties of cellulose hydrogel from kenaf  core prepared via pre-cooled dissolving
            method. Sains Malaysiana 43(8):
            1221-1229.
  
          
          Kho,
            L.K. & Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical
            forests in Malaysia: A review. Singapore Journal of Tropical Geography 36: 249-266.
  
          
          Lamaming, J., Hashim,
            R., Leh, C.P., Sulaiman, O., Sugimoto, T. & Nasir, M. 2015. Isolation and
            characterization of cellulose nanocrystals from parenchyma and vascular bundle
            of oil palm trunk (Elaeis guineensis). Carbohydrate Polymer 10(134): 534-540.
  
          
          Law, K.N., Wan Daud,
            W.R. & Ghazali, A. 2007. Morphological and chemical nature of fiber strands
            of oil palm empty fruit bunch (OPEFB). BioResources 2: 351-362.  
  
          Li, Q., Wu, P., Zhou,
            J. & Zhang, L. 2012. Structure and solution properties of cyanoethyls
            cellulose synthesized in LiOH/urea aqueous solution. Cellulose 19: 161-169.
  
          Liu, W. 2013.
            Solutions de cellulose et matériaux hybrides/composites à base de liquides
            ioniques et solvants alcalins. Thesis. Ecole Nationale Supérieure des Mines de
            Paris (Unpublished). pp. 4-35. 
  
          Luo, X. & Zhang,
            L. 2013. New solvents and functional materials prepared from cellulose
            solutions in alkali/urea aqueous system. Food Research International 52:
            387-400.
  
          
          Moon, R.J., Martini, A., Nairn, J.,
            Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and
              nanocomposites. Chem. Soc. Rev. 40: 3941-3994.
  
          Nazir, M.S.,
            Wahjoedi, B.A., Yussof, A.W. & Abdullah, M.A. 2013. Eco-friendly extraction
            and characterization of cellulose from oil palm empty fruit bunches. Bioresources 8(2): 2161-2172.
  
          
          Nurdiawati, A.,
            Novianti, S., Zaini, I.N., Nakhshinieva, B., Sumida, H., Takahashi, F. &
            Yoshikawa, K. 2015. Evaluation of hydrothermal treatment of empty fruit bunch
            for solid fuel and liquid organic fertilizer co-production. International
            Conference on Alternative Energy in Developing Countries and Emerging
            Economies. Energy Procedia. 79: 226-232.
  
          
          Olsson, C. &
            Westman, G. 2013. Direct dissolution of cellulose: Background, means and
              applications. Cellulose - Fundamental Aspect 6: 143-178.
  
          Rowell, R.M. &
            Young, R.A. 1978. Modified Cellulosics. New York: Academic Press. American
              Chemical Society. Cellulose, Paper and Textile Division. pp. 10-51.
  
          Saba, Paridah, M.T.,
            Abdan, K. & Ibrahim, N.A. 2016. Dynamic mechanical properties of oil palm
            nano filler/kenaf /epoxy hybrid nanocomposites. Construction and Building
              Materials 124: 133-138.
  
          
          Sajab, M.S., Chia,
            C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chin,
            W.S. 2011. Citric acid modified kenaf core fibers for removal of methylene blue
            from aqueous solution. Bioresource Technology 102(15): 7237-7243.
  
          
          Siqueira, G., Bras,
            J. & Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic source of fiber,
              microfibrillated cellulose and cellulose nanocrystal. BioResources 5(2):
              727-740.
  
          Strunk, P. 2012.
            Characterization of cellulose pulps and the influence of their properties on
            the process and production of viscose and cellulose ethers. PhD Thesis. Department of Chemistry
              Umea University, Sweden (Unpublished).
  
          Wang, Y. & Deng,
            Y. 2009. The kinetics of cellulose dissolution in sodium hydroxide solution at
            low temperatures. Biotechnology and Bioengineering.102: 1398-1405.
  
          
          Xiao, B., Sun, X.F.
  & Sun, R.C. 2001. Chemical, structural and thermal characterization of
            alkali-soluble lignins and hemicelluloses and cellulose from maize stems and
            rice straw. Polymer Degradation and Stability 74: 307-319.
  
          
          Zhang, S., Li, F-X.,
            Yu, J-Y. & Hsieh, Y-L. 2010. Dissolution behaviour and solubility of
            cellulode in NaOH complex solution. Carbohydrate Polymers 81: 668-674.
  
          
          Zhou, J., Zhang, L.
  & Cai, J. 2004. Behaviour of cellulose in NaOH/urea aqueous solution
            characterized by light scattering and viscometry. Journal of Polymer
              Science: Part A: Polymer Science 42: 5911-5920.
  
          
          Zhou, J. & Zhang,
            L. 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polymer
              Journal 32(10): 866-870.
  
          
          Zhou, J. & Li, J.
            2014. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production
              yield and chemical and morphological structures from different tunicate
              species. Cellulose 21: 3427-3441.
  
          
             
          
          *Pengarang untuk surat-menyurat; email: szakaria@ukm.edu.my