Sains Malaysiana 47(2)(2018):
                403-408
                  
              
                  http://dx.doi.org/10.17576/jsm-2018-4702-23  
                    
              
                 
              
              The Role of Electrolyte Fluidity on The Power Generation
                Characteristics of Thermally Driven Electrochemical Cells
                
              
                  (Peranan Kebendaliran Elektrolit pada Ciri-ciri Penjanaan Kuasa 
                    bagi Sel Elektrokimia Terpacu Haba)  
              
                 
              
              Syed
                Waqar Hasan1, Suhana Mohd Said1*, Ahmad Shuhaimi Bin Abu
                  Bakar2, Hasan Abbas Jaffery3 & Mohd. Faizul Mohd. Sabri3
                    
                  
              
                 
              
              1Department of Electrical Engineering,
                University of Malaya, 50603 Kuala Lumpur, Federal
                  Territory, Malaysia
                    
                  
              
                 
              
              2Low Dimensional Materials Research
                Centre, Department of Physics, 50603 Kuala Lumpur, Federal
                  Territory, Malaysia
                    
                  
              
                 
              
              3Department of Mechanical Engineering,
                University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
                  
                
              
                 
              
              Diserahkan:
                7 April 2017/Diterima: 8 Ogos 2017
                
              
              
                 
              
              ABSTRACT
                
              
              Thermally
                driven electrochemical cells (thermocells) are able to convert thermal gradient
                applied across redox electrolyte into electricity. The performance of the
                thermocells heavily depends on the magnitude and integrity of the applied
                thermal gradient. Herein, we study the iodide/triiodide (I‾/I3‾) based 1-Ethyl-3-methyl-imidazolium
                  Ethylsulfate ([EMIM][EtSO4])
                    solutions in a thermocell. In order to comprehend the role of fluidity of the
                    electrolyte, we prepared set of solutions by diluting [EMIM][EtSO4]
                    with 0.002, 0.004, and 0.010 mol of Acetonitrile (ACN). We realized a significant improvement in ionic conductivity (s) and electrochemical Seebeck (Se) of diluted electrolytes as compared to base [EMIM][EtSO4]
                      owing to the solvent organization. However, the infra-red thermography
                      indicated faster heat flow in ACN-diluted-[EMIM][EtSO4]
                      as compared to the base [EMIM][EtSO4]. Therefore, the maximum power
                      density of base [EMIM][EtSO4] (i.e. 118.5 mW.m-2) is 3 times higher than the ACN-diluted-[EMIM][EtSO4] (i.e. 36.1 mW.m-2) because of the lower thermal conductivity. Hence this
                        paper illustrates the compromise between the fast mass/flow transfer due to
                        fluidity (of diluted samples) and the low thermal conductivity (of the pure
                        [EMIM][EtSO4]).
                        
                      
              Keywords:
                Electrochemical cells; energy harvesting; ionic liquids; redox couple;
                thermoelectrics
                
              
              
                 
              
              ABSTRAK
                
              
              Sel elektrokimia yang dipacu secara haba (termosel)
                dapat menukar kecerunan terma yang digunakan merentasi elektrolit redoks ke
                dalam elektrik. Prestasi termosel sangat bergantung pada magnitud dan integriti kecerunan terma yang digunakan. Di sini, kami mengkaji larutan iodide/triiodide (I‾/I3‾) berasaskan 1-Ethyl-3-methyl-imidazolium
                  Ethylsulfate ([EMIM][EtSO4])
                    dalam termosel. Bagi memahami peranan ketidakstabilan elektrolit, kami
                    menyediakan satu set larutan dengan mencairkan [EMIM][EtSO4] dengan
                    0.002, 0.004, dan 0.010 mol Acetonitrile (ACN). Didapati bahawa peningkatan yang ketara dalam kekonduksian ion (s) dan elektrokimia Seebeck (Se) daripada
                      elektrolit yang dicairkan berbanding dengan asas [EMIM][EtSO4]
                      disebabkan oleh organisasi pelarut. Namun, termografi infra-merah menunjukkan
                      bahawa aliran haba yang lebih cepat di dalam ACN-dicairkan-[EMIM][EtSO4]
                      berbanding dengan asas [EMIM][EtSO4]. Oleh itu, ketumpatan kuasa
                      maksimum asas [EMIM][EtSO4] (iaitu 118.5 mW.m-2) adalah 3 kali lebih tinggi daripada ACN-dicairkan-[EMIM][EtSO4] (iaitu 36.1 mW.m-2) akibat daripada kekonduksian terma yang lebih rendah. Dengan ini, kajian ini menggambarkan kompromi antara pemindahan jisim/aliran cepat
                        disebabkan oleh kecairan (sampel yang dicairkan) dan kekonduksian haba yang
                        rendah (bagi [EMIM][EtSO4] tulen).
                        
                      
              Kata
                kunci: Cecair ionik; pasangan redox; penuaian tenaga; sel elektrokimia;
                termoelektrik
                
              
              
                 
              
              RUJUKAN
                
              
              Abraham, T.J., MacFarlane, D.R.,
                Baughman, R.H., Jin, L., Li, N. & Pringle, J.M. 2013a. Towards ionic liquid-based
                  thermoelectrochemical cells for the harvesting of thermal energy.  Electrochimica
                    Acta 113: 87-93.
                  
                
              Abraham, T.J., Douglas, R.M. &
                Jennifer, M.P. 2013b. High Seebeck coefficient redox ionic liquid electrolytes for
                  thermal energy harvesting. Energy
                    & Environmental Science 6(9): 2639-2645.
                  
                
              Abraham, T.J., Douglas, R.M. &
                Jennifer, M.P. 2011. Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical
                  cells. Chemical Communications 47(22): 6260-6262.
                    
                  
              Bonetti, M., Nakamae, S., Roger, M. & Guenoun, P.
                2011. Huge Seebeck coefficients in nonaqueous electrolytes.  The
                  Journal of Chemical Physics 134(11): 114513.
                
              
              Dhumal, N.R., Hyung, J.K. & Johannes, K. 2011.
                Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium
                ethyl sulfate ion pair. The Journal of
                  Physical Chemistry A 115(15): 3551-3558.
                
              
              Hasan, S.W., Suhana, M.S., Mohd Faizul, M.S., Ahmad
                Shuhaimi, A.B., Nur Awanis, H., Megat Muhammad, I.M.H., Jennifer, M.P. &
                Douglas, R.M. 2016. High thermal gradient
                  in thermo-electrochemical cells by insertion of a poly (vinylidene fluoride) membrane.  Scientific
                    Reportsp. 6.
                      
                    
              He, J., Danah, A.M., Douglas, R.
                & Jennifer, M.P. 2016. Temperature dependence of the electrode potential of a cobalt-based
                  redox couple in ionic liquid electrolytes for thermal energy harvesting.  Faraday Discussions.
                    
                  
              Hu, R., Baratunde, A.C., Nanda, H., Joseph, N.B.,
                Sergey, L., Stephanie, S., Gordon, W., Chee, T., Michael, T. & Adrian, G.
                2010. Harvesting waste thermal energy using a carbon-nanotube-based
                thermo-electrochemical cell.  Nano Letters 10(3): 838-846.
                  
                
              Jin, L., George, W.G., Douglas, R.M. & Jennifer, M.P. 2016. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Letters 1(4): 654-658.
                
              
              Kazim, A.H. & Baratunde, A.C. 2016.
                Electrochemical characterization of carbon nanotube and poly (3, 4-ethylenedioxythiophene) - poly
                  (styrenesulfonate) composite aqueous electrolyte for thermo-electrochemical cells. Journal of the
                    Electrochemical Society 163(8):
                      F867-F871.
                      
                    
              Kim, T., Jeong, S.L., Geonhui, L.,
                Hongsik, Y., Jeyong, Y., Tae, J.K. &
                  Yong, H.K. 2017. High thermopower of ferri/ferrocyanide redox couple in
                    organic-water solutions. Nano
                      Energy 31: 160-167.
                    
                  
              Lazar, M.A., Danah, A.M., Douglas, R.M. &
                Jennifer, M.P. 2016. Enhanced thermal energy harvesting performance of a cobalt
                redox couple in ionic liquid–solvent mixtures. Physical Chemistry Chemical Physics 18(3): 1404-1410.
                
              
              Mua, Y. & Quickenden, T.I. 1996. Power conversion efficiency, electrode separation, and
                overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. Journal of the
                  Electrochemical Society 143(8):
                    2558-2564.
                    
                  
              Quickenden, T.I. & Mua, Y. 1995. The power
                conversion efficiencies of a thermogalvanic cell operated in three different
                orientations. Journal of the Electrochemical Society 142(11): 3652-3659.
                  
                
              Salazar, P.F., Sai, T.S., Ali, H.K.,
                Jennifer, M.P. & Baratunde, A.C. 2014. Enhanced thermo-electrochemical power using carbon nanotube additives
                  in ionic liquid redox electrolytes.  Journal of Materials Chemistry A 2(48): 20676-20682.
                  
                
              Wu, J., Jeffrey, J.B. & Leigh, A. 2016. Thermoelectrochemistry using conventional and novel gelled
                electrolytes in heat-to-current thermocells. Electrochimica Acta 225: 482-492.
                  
                
              Yang, P., Kang, L., Qian, C.,
                Xiaobao, M., Yishu, Z., Song, L., Guang, F. & Jun, Z. 2016. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angewandte Chemie 128(39): 12229-12232.
                  
                
              Zinovyeva, V., Sawako, N., Marco, B.
                & Michel, R. 2014. Enhanced
                  thermoelectric power in ionic liquids. ChemElectroChem 1(2): 426-430.
                  
                
              
                 
              
              *Pengarang untuk surat-menyurat; email: smsaid@um.edu.my