Sains Malaysiana 47(3)(2018): 537–542
            
          
              http://dx.doi.org/10.17576/jsm-2018-4703-14 
                  
          
             
          
          Salicylic Acid in Nutrient Solution
            Influence the Fruit Quality and Shelf Life of Cherry Tomato Grown in
            Hydroponics
            
          
          (Asid Salisilik dalam Larutan Nutrien
            Mempengaruhi Kualiti Buah dan Jangka Hayat Tomato Ceri Hidroponik)
            
          
          
             
          
          MOHAMMAD ZAHIRUL ISLAM1,2, MAHMUDA AKTER MELE1, KI-YOUNG CHOI3, JUN PILL BAEK4 & HO-MIN KANG1,2*
            
          
          
             
          
          1Department of
            Horticulture, Kangwon National University, Chuncheon 24341, Korea
            
          
          
             
          
          2Agriculture and Life
            Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
            
          
          
             
          
          3Department of Controlled
            Agriculture, Kangwon National University, Chuncheon 24341, Korea
            
          
          
             
          
          4Department of Converged
            and Integrated Agro-Industry Science, Catholic Sangji College, Andong 36686, Korea
            
          
          
             
          
          Diserahkan: 10 Ogos
            2016/Diterima: 6 Oktober 2017
            
          
          
             
          
          ABSTRACT
            
          
          Salicylic acid (SA)
            is a plant hormone that has functional effects in plant. This study was
            conducted to find out the effects of salicylic acid (SA)
            on cherry tomato fruit quality and shelf life. Different concentrations (0.13,
            0.25, 0.50 and 1.00 mM) SA were added in nutrient solution of
            hydroponic system in plants vegetation and fruits development stage. Light-red
            maturity stage of cherry tomato fruits was harvested to measure the harvest
            time fruit quality and stored at 5℃ to measure
              the postharvest quality and shelf life. Ethylene production and respiration
              rate of tomato fruit at the harvest time and after storage was effectively
              reduced by the 0.50 mM SA treatment. Increased acetaldehyde (p≤0.05)
                as well as ethanol (p≤0.001) was performed in the 0.50 mM SA treatment
                  at after storage. The 0.50 mM SA treatment showed the lowest
                  fresh weight loss 3.08% and the longest shelf life 25 days by reducing decay,
                  fruits softening and fungal infection. Significantly lower fungal incidence (p≤0.001)
                    was observed in the 0.50 mM SA treatment. Final storage day
                    color development and lycopene content was lower in the 0.50 mM SA treatment
                    compare with other treatments. The 0.50 mM SA treatment
                    obtained the highest firmness at harvest time and it retain after storage.
                    Comparatively higher vitamin C and lower soluble solids was showed at the
                    harvest time and after storage. Therefore, the 0.50 mM SA treatment
                    is effective in increasing the quality and shelf life of cherry tomato fruit.
  
          
             
          
          Keywords: Ethylene production;
            firmness; respiration rate; soluble solids; vitamin C
            
          
          
             
          
          ABSTRAK
            
          
          Asid salisilik (SA)
            merupakan hormon tumbuhan yang mempunyai kesan kefungsian pada tumbuhan. Kajian
            ini dijalankan untuk mengetahui kesan asid salisilik (SA)
            terhadap kualiti dan hayat simpanan buah tomato ceri. Kepekatan SA yang
            berbeza telah ditambahkan dalam larutan nutrien sistem hidroponik dalam
            peringkat pertumbuhan pokok dan buah-buahan. Buah tomato ceri dituai pada
            peringkat kematangan merah bercahaya untuk mengukur waktu tuaian buah
            berkualiti dan disimpan pada 5oC untuk mengukur kualiti
            selepas tuaian dan hayat simpanan. Pengeluaran etilena dan kadar pernafasan
            buah tomato pada waktu tuaian dan selepas penyimpanan dikurangkan oleh 0.50 mM SA dengan
            berkesan. Peningkatan asetaldehid (p≤0.05) serta etanol (p≤0.001)
              telah dilakukan dalam rawatan 0.50 mM SA selepas penyimpanan. Rawatan
              0.50 mM SA menunjukkan penurunan berat segar terendah sebanyak
              3.08% dan jangka hayat terpanjang selama 25 hari dengan mengurangkan pereputan,
              pelembutan buah-buahan dan jangkitan kulat. Pertumbuhan kulat yang lebih rendah
              (p≤0.001) diperhatikan dalam rawatan 0.50 mM SA.
                Pertumbuhan warna penyimpanan hari terakhir dan kandungan lycopene lebih rendah
                dalam rawatan 0.50 mM SA berbanding dengan rawatan lain.
                Rawatan 0.50 mM SA memperoleh ketegaran tertinggi pada
                masa tuaian dan bertahan selepas penyimpanan. Vitamin C yang lebih tinggi dan
                pepejal larut rendah ditunjukkan pada masa penuaian dan selepas penyimpanan.
                Oleh itu, rawatan 0.50 mM SA berkesan untuk meningkatkan kualiti
                dan jangka hayat buah tomato ceri.
  
          
             
          
          Kata
            kunci: Kadar pernafasan: ketegaran; penghasilan etilena; pepejal larut; vitamin
            C
            
          
          RUJUKAN
            
          
          Achuo,
            E.A., Audenaert, K., Meziane, H. & Hofte, M. 2004. The salicylic
            acid-dependent defence pathway is effective against different pathogens in
            tomato and tobacco. Plant Pathol. 53: 65-72.
  
          
          Aghdam,
            M.S., Asghari, M., Khorsandi, O. & Mohayeji, M. 2014. Alleviation of
            postharvest chilling injury of tomato fruit by salicylic acid treatment. J.
              Food Sci. Technol. 51(10): 2815-2820.
  
          
          Babalar,
            M., Asghari, M., Talaei, A. & Khosroshahi, A. 2007. Effect of pre- and
            postharvest salicylic acid treatment on ethylene production, fungal decay and
            overall quality of Selva strawberry fruit. Food Chem. 105: 449-453.
  
          
          Cai,
            X.Z. & Zheng, Z. 1999. Induction of systemic resistance in tomato by and
            incompatible race of Cladosporium fulvum and the accumulation dynamics
            of salicylic acid in tomato plants. Acta. Hort. Sinica. 29: 261-264.
  
          
          Enyedi,
            A.J., Yalpani, N., Silverman, P. & Raskin, I. 1992. Localization,
            conjugation, and function of salicylic acid in tobacco during the
            hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. USA 89:
            2480-2484.
  
          
          Fatemi,
            H., Mohammadi, S. & Aminifard, M.H. 2013. Effect of postharvest salicylic
            acid treatment on fungal decay and some postharvest quality factors of kiwi
            fruit. Arch. Phytopathology Plant Protect. 46(11): 1338-1345.
  
          
          Fish,
            W.W., Perkins-Veazie, P. & Collins, J.K. 2002. A quantitative assay for
            lycopene that utilizes reduced volumes of organic solvents. J. Food Compos.
              Anal. 15: 309-317.
  
          
          Han,
            T. & Li, L.P. 1997. Physiological effect of salicylic acid on storage of
            apple in short period. Plant Physiol. Comm. 33: 347-348.
  
          
          Islam,
            M.Z., Mele, M.A., Baek, J.P. & Kang, H.M. 2016. Cherry tomato qualities
            affected by foliar spraying with boron and calcium. Hortic. Environ.
              Biotechnol. 57(1): 46-52.
  
          
          Islam,
            M.Z., Baek, J.P., Kim, Y.S. & Kang, H.M. 2013. Characteristics of chilling
            symptoms of cherry tomato compared to beefsteak tomato harvested at different
            ripening stages. J. Pure Appl. Microbio. 7: 703-709.
  
          
          Janda,
            T., Gondor, O.K. & Yordanova, R. 2014. Salicylic acid and photosynthesis:
            Signaling and effects. Acta Physiol. Plant 36(10): 2537-2546.
  
          
          Javanmardi,
            J. & Akbari, N. 2016. Salicylic acid at different plant growth stages
            affects secondary metabolites and phisico-chemical parameters of greenhouse
            tomato. Adv. Hort. Sci. 30(3): 151-157.
  
          
          Kazemi,
            M. 2014. Effect of foliar application with salicylic acid and methyl jasmonate
            on growth, flowering, yield and fruit quality of tomato. Bull. Env.
              Pharmacol. Life. Sci. 3: 154-158.
  
          
          Knee,
            M. & Hatfield, S.G.S. 1981. The metabolism of alcohols by apple fruit
            tissue. J. Sci. Food Agric. 32: 593-600.
  
          
          Kumar,
            D., Mishra, D.S., Chakraborty, B. & Kumar, P. 2013. Pericarp browning and
            quality management of litchi fruit by antioxidants and salicylic acid during
            ambient storage. J. Food Sci. Technol. 50(4): 797-802.
  
          
          Leslie,
            C.A. & Romani, R.J. 1988. Inhibition of ethylene biosynthesis by salicylic
            acid. Plant Physiol. 88: 833-837.
  
          
          Mansouri,
            H. 2012. Salicylic acid and sodium nitroprusside improve postharvest life of
            chrysanthemums. Sci. Hort. 145: 29-33.
  
          
          Mo,
            Y., Gong, D., Liang, G., Han, R., Xie, J. & Li, W. 2008. Enhanced
            preservation effects of sugar apple fruits by salicylic acid treatment during
            post-harvest storage. J. Sci. Food Agric. 88: 2693-2699.
  
          
          Park,
            K.W., Kang, H.M. & Kim, C.H. 2000. Comparison of storability on film
            sources and storage temperature for fresh Japanese mint in MA storage. J.
              Bio-Environ. Control. 9(1): 40-46.
  
          
          Pesis,
            E. 2005. The role of the anaerobic metabolites, acetaldehyde and ethanol, in
            fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest
              Biol. Technol. 37: 1-19.
  
          
          Pila,
            N., Gol, N.B. & Rao, T.V.R. 2010. Effect of post-harvest treatments on
            physicochemical characteristics and shelf life of tomato (Lycopersicon
              esculentum Mill.) fruits during storage. Am-Euras. J. Agric. Environ.
                Sci. 9: 470-479.
  
          
          Rahmawati,
            S.L., Esyanti, R.R. & Gunaeni, N. 2014. The role of leaf extracts as
            plant-activator to enhance salicylic acid production on tomato plant (Lycopersicon
              esculentum Mill.) infected by CMV (cucumber mosaic virus). Intl. J.
                Chem. Environ. Biol. Sci. 2(2): 2320-4087.
  
          
          Rohani,
            M.Y., Zaipun, M.Z. & Norhayati, M. 1997. Effect of modified atmosphere on
            the storage life and quality of Eksotika papaya. J. Trop. Agric. Food Sci. 25:
            103-113.
  
          
          Rowshan,
            V. & Bahmanzadegan, A. 2013. Effects of salicylic acid on essential oil
            components in Yarrow (Achillea millefolium Boiss ). Int. J. Basic
              Sci. Appl. Res. 2: 347-351.
  
          
          Sato,
            S., Sakaguchi, S., Furukawa, H. & Ikeda, H. 2006. Effects of NaCl
            application to hydroponic nutrient solution on fruit characteristics of tomato
            (Lycopersicon esculentum Mill.). Sci. Hort. 109: 248-253.
  
          
          Spletzer,
            M.E. & Enyedi, A.J. 1999. Salicylic acid induces resistance to Alternaria
              solani in hydroponically grown tomato. Phytopathol. 89: 722-727.
  
          
          Supapvanich, S.
  & Promyou, S. 2013. Effciency of salicylic acid application on postharvest perishable
            crops. In Salicylic Acid: Plant Growth and Development, edited by Hayat,
            S., Ahmad, A. & Alyemeni, M.N. New York: Springer Science + Business Media
            Dordrecht Press. pp. 339-355.
  
          
          Tigist,
            M., Workneh, T.S. & Woldetsadik, K. 2013. Effects of variety on the quality
            of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3):
            477-486.
  
          
          Wang,
            L.J. & Li, S.H. 2006. Salicylic acid-induced heat or cold tolerance in
            relation to Ca2+ homeostasis
            and antioxidant systems in young grape plants. Plant Sci. 170: 685-694.
  
          
          Wang,
            L., Chen, S., Kong, W., Li, S. & Archbold, D.D. 2006. Salicylic acid pretreatment
            alleviates chilling injury and affects the antioxidant system and heat shock
            proteins of peaches during cold storage. Postharvest Biol. Technol. 41:
            244-251.
  
          
          Yildirim,
            E. & Dursun, A. 2009. Effect of foliar salicylic acid applications on plant
            growth and yield of tomato under greenhouse conditions. Acta Hortic.
            807(56): 395-400.
  
          
          Zheng,
            Y. & Zhang, Q. 2004. Effects of polyamines and salicylic acid postharvest
            storage of ‘Ponkan’ mandarin. Acta Hort. 632: 317-320.
  
          
          
             
          
          *Pengarang untuk
            surat-menyurat; email: hominkang@kangwon.ac.kr