Sains
Malaysiana 47(4)(2018): 715-723
http://dx.doi.org/10.17576/jsm-2018-4704-09
Kebolehserapan Metilena Biru oleh
Hidrogel Selulosa Bakteria Teradiasi Gamma menggunakan Isoterma
Langmuir dan Freundlich
(Absorption
Ability of Gamma Irridiated Bacterial Cellulose Hydrogel using Langmuir
and
Freundlich Isotherme)
AZWAN
MAT LAZIM*, ADIL HAKAM OSMAN & MARYAM MOKHTAROM
Pusat Pengajian Sains Kimia
& Teknologi Makanan, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 22 Jun 2017/Diterima: 26 Oktober 2017
ABSTRAK
Kajian
ini bertujuan menghasilkan hidrogel responsif berasaskan selulosa
bakteria yang diperoleh daripada Nata de Coco
(NDC) dan asid akrilik
(AA). Tiga jenis sampel
telah disediakan berdasarkan nisbah NDC:AA iaitu
sampel hidrogel A [1:1], B [2:1] dan C [3:1]. Pencangkukan
AA terhadap molekul NDC menggunakan kaedah pempolimeran radikal
Gamma (GRP) menghasilkan hidrogel NDC-AA
(sumber: 60Co).
Kaedah yang menggunakan tenaga
yang tinggi ini akan
menghasilkan radikal bebas seperti OH•, H•, H2O2
dan H2. Kesemua radikal ini menyerang kumpulan berfungsi
yang terdapat pada
NDC dan AA seterusnya menggalakkan proses
pencangkukan AA terhadap
NDC. Hidrogel B [2:1] dipilih
dan diuji sebagai penjerap
metilena biru (MB)
dan perubahan
keamatannya telah dianalisis menggunakan spektrofotometer
UV-VIS. Keputusan yang diperoleh telah diselaraskan dengan dua model
isoterma,
Langmuir dan Freundlich. Perbandingan pemalar
bagi kedua-dua model isoterma ini mendapati hidrogel B [2:1] yang
dihasilkan telah mematuhi kedua-dua model
isoterma. Keputusan yang diperoleh ini
menyokong keupayaan hidrogel B [2:1]
untuk digunakan sebagai
penjerap alternatif MB yang paling
efisien.
Kata kunci: Hidrogel; metilena biru; penjerapan;
selulosa bakteria; teknik sinaran gamma
ABSTRACT
This study
aimed to produce a responsive hydrogel based on bacterial cellulose
obtained from Nata de Coco (NDC) and acrylic acid (AA). Three samples
were prepared by ratio of NDC:AA and labelled as hydrogel A [1:1],
B [2:1] and C [3:1]. The grafting of AA onto NDC molecules using
gamma radiation polymerisation (GRP) method resulting in the formation of NDC-AA hydrogel
(source: 60Co). The
high energy
used in this
method produced
free radicals such
as OH•, H•,
H2O2
and H2. These free radicals
attacked the functional groups of NDC and AA, allowing AA to be grafted onto NDC.
Hydrogel B [2:1] was selected for further test in methylene blue
(MB) adsorption using UV-VIS spectrophotometer. All data were analyzed and adjusted according
to Langmuir and Freundlich isotherm
model. The comparison of constant in both
samples were analyzed
and found that
hydrogel B [2:1] data
has fitted
both models. Therefore, the results obtained supported the ability of hydrogel
B [2:1] as an alternative MB
adsorbent.
Keywords:
Adsorption; bacterial cellulose; gamma radiation technique; hydrogel;
methylene blue
RUJUKAN
Amin, M.C.I.M., Abadi, A.G.
& Katas, H. 2014. Purification, characterization and comparative
studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers 99: 180-189.
Amin, M.C.I.M., Ahmad, N.,
Halib, N. & Ahmad, I. 2012. Synthesis and characterization of thermo-
and pH-responsive bacterial cellulose/acrylic acid
hydrogels for drug delivery.
Carbohydrate Polymers
88(2): 465-473.
Ashri, A. & Lazim, A.M.
2014. A study on the effect of the concentration of N, N-methylenebisacrylamide and acrylic
acid toward the properties of
Dioscorea hispida-starch-based hydrogel. AIP Conference Proceedings 1614(1): 251-255.
Azizian, S. 2004. Kinetic
models of sorption: A theoretical analysis. Journal
of Colloid and Interface Science 276(1): 47-52.
Azizian, S. & Fallah,
R.N. 2010. A new empirical rate equation for adsorption
kinetics at solid/solution interface. Applied Surface Science 256(17): 5153-5156.
Azman, I.,
Mutalib, A.S.,
yusoff, S.F.M., Fazry, S.,
Noordin, A., Kumaran, M. & Lazim,
A.M. 2016. Novel
discorea hispida starch based hydrogel and
their beneficial useas disinfectant.
Journal of Bioactive and Biocompatible
Polymers 31(1): 42-59.
Azwan, M.L., Farahain, M., Siti, F.M.y., Ahmad, I. &
Adil,H. 2013. Synthesis and characterization of ph sensitive hydrogel
using extracted pectin from dragon fruit peel. Malaysian
Journal of Analytical Sciences 17(3): 481-489.
Boo, W.P. & Azwan, M.L. 2016. Synthesis and characterization of starch-based hydrogel by using
gamma radiation technique. Malaysian Journal
of Analytical Sciences
20(5): 1011-1019.
Bulut, Y. &
Aydın, H. 2006. A kinetics and thermodynamics study of
methylene blue adsorption on wheat shells.
Desalination 194:
259-267.
Dafader, N.C., Akter, T.,
Haque, M.E., Swapna, S.P.,
Islam, S. & Huq, D. 2012. Effect of acrylic acid on the
properties of polyvinylpyrrolidone hydrogel
prepared by the application
of gamma radiation. African
Journal of Biotechnology 11(66):
13049-13057.
Fytianos, K., Voudrias,
E. & Kokkalis, E. 2000. Sorption– desorption behaviour of 2,4-dichlorophenol
by marine sediments. Chemosphere
40(1): 3-6.
Ghaedi, M., Nasab, A.G., Khodadoust, S., Rajabi,
M. & Azizian, S.
2014. Application of activated carbon as
adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. Journal of Industrial
and Engineering Chemistry 20(4): 2317-2324.
Hadi, H.
& Idayu,
M.I. 2012. Impact
of metal oxide
nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. International Journal of Biological Macromolecules 50(5): 1334-1340.
Haerifar, M. & Azizian, S. 2013. An
exponential kinetic
model for adsorption at solid/solution interface. Chemical Engineering Journal 215-216: 65-71.
Hameed, B.H., Din, A.T.M.
& Ahmad, A.L. 2007. Adsorption of methylene blue onto bamboo-based
activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials 141(3): 819-825.
Ho, Y.S. & McKay, G.
1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.
Lee, S.C.,
Kwon, I.K. &
Park, K. 2013. Hydrogels
for delivery of bioactive agents: A historical perspective.
Advanced Drug Delivery Reviews 65: 17-20.
Liew, M.,
Rizafizah, O., Rozida, K., Amin, M.C.I.M.
& Azwan, M.L.2015. Synthesis of hydrogel based on nata de coco and acrylic acid as co-monomer
using free radical polymerization method. Malaysian Journal of Analytical Sciences 18(2): 299-305.
Ofomaja, A.E.
2007. Sorption
dynamics and isotherm
studies of methylene
blue uptake on to palm kernel fibre. Chemical
Engineering Journal 126(1):
35-43.
Olivera,
S.,
Muralidhara, H.B., Venkatesh, K., Guna, K., Gopalakrishna, K. & Kumar, Y.K.
2016.
Potential applications
of cellulose and chitosan nanoparticles/
composites in wastewater treatment: A review.
Carbohydrate
Polymers 153: 600-618.
Sajab, M.S., Chia, C.H., Zakaria, S. & Khiew,
P.S. 2013. Cationic and anionic modifications
of oil palm empty fruit bunch fibers for the removal of dyes from
aqueous solutions. Bioresour. Technol. 128: 571-577.
Sun, X.F., Liu, B., Jing, Z. & Wang, H. 2015. Preparation and adsorption
property of xylan/ poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydrate Polymers 118: 16-23.
Zhou, C., Lee, S., Dooley,
K. & Wu, Q. 2013. A facile approach to fabricate porous nanocomposite
gels based on partially
hydrolyzed polyacrylamide and cellulose nanocrystals for
adsorbing methylene blue at low concentrations. Journal of Hazardous
Materials 263(Part 2): 334-341.
Zhou, Y., Fu, S., Liu, H., Yang, S. & Zhan, H. 2011. Removal of methylene blue
dyes from wastewater using cellulose-based
superadsorbent hydrogels. Polymer Engineering & Science 51(12):
2417-2424.
*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my
|