Sains Malaysiana 47(5)(2018): 1039–1043 
                http://dx.doi.org/10.17576/jsm-2018-4705-21 
                    
            
               
            
            Pengoptimuman Parameter Sonikasi dan Pengacauan Magnetik bagi Mendapatkan Penyerakan Sebati Komposit Kuprum-Grafin Berdasarkan Sifat Morfologi
              
            
                (Optimization of Sonication 
                  and Magnetic Stirrer Parameter for Copper-Graphene Composite's 
                  Homogeneous Dispersion from Morphological Properties)  
                  
            
               
            
            NOR NABILLA KADIMAN, JULIE ELVYANA ROMLI, NORHAMIDI MUHAMAD, ABU BAKAR SULONG
              & FARHANA MOHD FOUDZI
              
            
            
               
            
            Jabatan Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
              Selangor Darul Ehsan, Malaysia
              
            
            
               
            
            Diserahkan: 7 November 2017/Diterima: 9 Disember 2017
              
            
            
               
            
            
               
            
            ABSTRAK
              
            
            Kajian mengenai grafin kini semakin meluas disebabkan sifat kebolehaliran terma yang mampu meningkatkan potensi bahan komposit. Penambahan grafin dalam matriks kuprum dikaji dengan menggunakan gabungan bahan pengikat iaitu polietilena glikol (PEG), polimetil metakrilat (PMMA) dan asid stearik. Penggunaan grafin sebagai bahan pengisi dalam matriks kuprum merupakan pendekatan baru yang bertujuan untuk meningkatkan kebolehaliran terma produk yang dihasilkan. Namun, penambahan grafin dalam matriks kuprum boleh menyebabkan ketidaksamarataan zarah komposit kerana penggumpalan zarah-zarah grafin. Oleh itu, kaedah sonikasi dan pengacauan magnetik semasa proses pra-campuran digunakan bagi menghasilkan bahan suapan yang sebati dan penyerakan grafin yang lebih baik tanpa penggumpalan. Suhu proses sonikasi telah ditetapkan pada 55˚C dengan masa sonikasi yang berbeza iaitu 30 minit, 60 minit dan 90 minit. Bagi proses pengacauan magnetik, parameter yang digunakan adalah 55˚C, selama 21
              jam pada kelajuan yang berbeza iaitu 300, 350 dan 400 rpm. Analisis imej Pancaran Medan Mikroskopi Elektron Pengimbasan (FESEM) dan Pemetaan EDX telah dijalankan bagi mengkaji penyerakan grafin dalam komposit kuprum grafin. Keputusan menunjukkan hasil yang lebih baik diperoleh selepas proses sonikasi dan pengacauan magnetik dijalankan. Penyerakan terbaik yang lebih seragam dan sebati diperoleh pada masa sonikasi 60 min dan pengacauan magnetik pada kelajuan sederhana iaitu 350 rpm. Zarah grafin didapati kurang bertumpu pada satu tempat dan penggumpalan semula juga tidak berlaku. Penyerakan sebati ini menjadikan hubungan antara muka zarah-zarah grafin dan kuprum menjadi lebih baik seterusnya mampu mengurangkan keliangan bagi penghasilan jasad akhir.
              
            
            
               
            
            Kata kunci: Grafin; komposit; kuprum; penyerakan; sonikasi
              
            
            
               
            
            ABSTRACT
              
            
            Currently, graphene
              is widely discussed among researchers due to its thermal flowability that can improve the properties of composite materials. This research used the
              addition of graphene in copper matrix with a combination of binders which are
              polyethylene glycol (PEG), polymethyl methacrylate (PMMA) and stearic acid. The use of graphene as a filler
              material in copper matrix is a new approach in enhancing the thermal
              conductivity of the product produced. However, the additions of graphene in
              copper matrix can produce uneven composite because of the agglomeration of
              graphene particles. Therefore, sonication and magnetic stirring methods during
              pre-mixing process were used to produce a uniform feedstock with a better
              dispersion of graphene with minimum agglomeration. Sonication process
              temperature was set at 55˚C with different sonication duration which is
              30, 60 and 90 min. For the magnetic stirring process, the parameters are
              55˚C for 21 h at different speeds such as 300, 350 and 400 rpm. Field Emission
              Scanning Electron Microscope (FESEM) and EDX Mapping
              were carried out to observe the dispersion of graphene in the copper graphene
              composites. It was found that, better results were obtained after sonication
              and magnetic stirring process conducted. The best dispersion with more uniform
              and homogeneous was obtained at 60 min sonication time and medium magnetic
              stirring speed at 350 rpm. Graphene particles were found less grouping and did
              not re-agglomerate. This homogeneous dispersion made the interface relationship
              between copper and graphene particles better and porosities for the fabrication
              of final parts reduced.
              
            
            
               
            
            Keywords: Composite; copper; dispersion; graphene; sonication
              
            
            RUJUKAN
              
            
            Atif, R.
              & Inam, F. 2016. Reasons and
                remedies for the agglomeration of multilayered graphene and carbon nanotubes in
                polymers. Beilstein Journal of
                  Nanotechnology 7(1): 1174-1196.
                
              
            Azaman, N.E., Raza., M.R., Muhamad, N., Akhtar, M.N., Sulong. A.B. 2016. Rheological study of
              copper and copper grapheme feedstock for powder injection molding. Journal
                of Physics: Conference Series 790(1).
              
            
            Chen, F., Ying, J.,
              Wang, Y., Du, S., Liu, Z. & Huang, Q. 2016. Effects of graphene content on
              the microstructure and properties of copper matrix composites. Carbon 96(November):
              836-842.
              
            
            Frmyr,
              T.R., Hansen, F.K. & Olsen, T. 2012. The optimum dispersion of carbon
                nanotubes for epoxy nanocomposites: Evolution of the particle size distribution
                by ultrasonic treatment. Journal of Nanotechnology 2012: Article ID.
                545930.
                
              
            Guo,
              Z., Ran, S. & Fang, Z. 2013. Promoting
                dispersion of graphene nanoplatelets in polyethylene
                and chlorinated polyethylene by Friedel-Crafts
                reaction. Composites Science and Technology 86: 157-163.
                
              
            Ma,
              P.C., Siddiqui, N.A., Marom, G. & Kim, J.K. 2010. Dispersion and
                functionalization of carbon nanotubes for polymer-based nanocomposites: A
                review. Composites Part A: Applied Science and Manufacturing 41(10):
                1345-1367.
                
              
            Muhsan,
              A.S., Ahmad, F., Mohamed, N.M., Megat Yusoff, P.S.M. & Rafi Raza, M. 2013. Uniform
                dispersion of multiwalled carbon nanotubes in copper
                matrix nanocomposites using metal injection molding technique. International
                  Journal of Manufacturing Engineering 2013(November 2015): 1-9.
                
              
            Ruffino,
              F., Meli, G. & Grimaldi,
              M.G. 2016. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts. Solid State
                Communications 225(JANUARY): 1-6.
                
              
            Shah,
              R., Kausar, A. & Muhammad, B. 2015. Exploration of polythiophene/graphene, poly(methyl
                methacrylate)/ graphene and polythiophene-co-
                poly(methyl methacrylate)/ graphene nanocomposite obtained via in-situ technique. Journal of Plastic Film and Sheeting 31(2): 144-157.
                
              
            Taurozzi,
              J.S., Hackley, V.A. & Wiesner,
              M.R. 2011. Ultrasonic dispersion of nanoparticles for environmental,
                health and safety assessment--issues and recommendations. Nanotoxicology 5(4): 711-729.
                
              
            Wang,
              B. & Zhao, R. 2016. A review on the dispersion of graphene in aqueous solution. Sciprints. doi. 10.20944/ preprints201609.0036.v1.
                
              
            Zhi, M.
              & Huang, W. 2016. Curing kinetics, mechanical properties and thermal stability
                of epoxy/graphene nanoplatelets (GNPs) powder
                coatings. Journal of Wuhan University of
                  Technology- Mater. Sci. Ed. 31(5): 1155-1161.
                
              
            
               
            
            
               
            
            *Pengarang untuk surat-menyurat; email: nabillakadiman@gmail.com