| Sains Malaysiana 47(5)(2018): 893–901  http://dx.doi.org/10.17576/jsm-2018-4705-04 
                 
             
           Penentuan Kepekatan
            Radionuklid Tabii dan Indeks Bahaya Radiologi akibat Penggunaan Condisoil®
            ke atas Penanaman Hibiscus cannabinus (Kenaf)
  
           (Determination of Natural 
              Radionuclides Concentrations and Radiological Hazard Index due to 
              Application of Condisoil® on Hibiscus cannabinus (Kenaf) 
              Cultivation)   
             
           AZNAN FAZLI ISMAIL1,2*, KHAIRIAH ROSLI2, WAN MOHD RAZI IDRIS3 & SAHIBIN ABD. RAHIM3
            
           
             
           1Pusat Penyelidikan
            Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
            43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           2Program Sains Nuklear,
            Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
            Selangor Darul Ehsan, Malaysia
            
           
             
           3Pusat Pengajian Sains
            Sekitaran & Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan
            Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  
           
             
           Diserahkan: 5
            September 2017/Diterima: 27 November 2017
            
           
             
           
             
           ABSTRAK
            
           Kajian ini bertujuan
            menentukan kepekatan aktiviti radionuklid tabii (226Ra, 228Ra
            dan 40K) dalam tanah, air dan tumbuhan serta faktor
            pemindahan daripada tanah kepada tumbuhan dan indeks bahaya radiologi akibat
            penggunaan Condisoil®. Sebanyak 4 sampel tanah, 14 sampel air dan 4 sampel
            tumbuhan telah dianalisis menggunakan sistem spektometri sinar gama. Keputusan
            kajian mendapati julat kepekatan aktiviti 226Ra, 228Ra
            dan 40K dalam sampel tanah yang menggunakan Condsoil®
            masing-masing adalah 13.8 - 17.6, 15.7 - 21.0 dan 44.5 - 57.7 Bq kg-1.
            Julat kepekatan aktiviti 226Ra, 228Ra
            dan 40K dalam sampel tumbuhan pula masing-masing adalah 5.0 -
            18.5, 0.1 - 1.5 dan 42.7 - 321.8 Bq kg-1.
            Bagi sampel air, julat kepekatan aktiviti bagi radionuklid 226Ra, 228Ra
            dan 40K masing - masing adalah 0.3 - 0.9, 0.3 - 3.9 dan 1.4 -
            11.6 Bq L-1. Julat faktor pemindahan radionuklid 226Ra, 228Ra
            dan 40K daripada tanah ke tumbuhan masing-masing adalah 0.42
            - 0.71, 0.01 - 0.08 dan 0.85 - 5.34. Penilaian bahaya radiologi mendapati
            indeks kesetaraan radium berada di bawah nilai had yang dicadangkan iaitu 370
            Bq kg-1. Sehubungan dengan itu, kajian ini mendapati
            penggunaan Condisoil® sebagai bahan penambahbaikan tanah tidak menyebabkan
            pertambahan radionuklid tabii ke dalam alam sekitar serta tidak mendatangkan
            risiko bahaya radiologi kepada manusia.
  
           
             
           Kata kunci: Bahaya
            radiologi; Condisoil®; radionuklid tabii; sisa industri
  
           
             
           ABSTRACT
            
           The objectives of
            this study were to determine the natural radioactivity concentrations (226Ra, 228Ra
            and 40K) in soil, water and plant due to the application of
            Condisoil®, soil-to-plant transfer factor and radiological hazard index due to
            the application of Condisoil®. A total of 4 soils, 14 waters and 4 plants
            samples have been analysed using gamma spectrometry system. The results showed
            that the activity concentrations of 226Ra, 228Ra
            and 40K in soils treated with Condisoil® ranged from 13.8 -
            17.6, 15.7 - 21.0 and 44.5 - 57.7 Bq kg-1,
            respectively. The activity concentrations of 226Ra, 228Ra
            and 40K in plants ranged from 5.0 - 18.5, 0.1 - 1.5 and 42.7
            - 321.8 Bq kg-1, respectively. In addition to
            that, the activity concentrations of 226Ra, 228Ra
            and 40K in water was in the ranged of 0.3 - 0.9, 0.3 - 3.9
            and 1.4 - 11.6 Bq L-1, respectively. The
            soil-to-plant transfer factor for 226Ra, 228Ra
            and 40K were in the ranged of 0.42 - 0.71, 0.01 - 0.08 and
            0.85 - 5.34, respectively. The radiological hazard assessment found that the
            radium equivalent index was lower than the recommended limit of 370 Bq kg-1.
            Therefore, this study concludes that the application of Condisoil® as soil
            amelioration does not contribute to the accumulation of natural radionuclide in
            the environment as well as does not pose a significant radiological risk to
            human.
  
           
             
           Keywords: Condisoil®; industrial residue; natural radionuclides;
            radiological hazard
            
           RUJUKAN
            
           Ali, A.A., Heiyam, N.H. & Zahrah, B.M. 2016. Natural
            radioactivity levels in some vegetables and fruits commonly used in Najaf
            Governorate, Iraq. Journal of Bioenergy and Food Science 3: 113-123.
  
           Al-Areqi, W.M., Majid, A.A. & Sarmani, S. 2014. Thorium,
            uranium and rare earth elements content in lanthanide concentrate (LC) andwater
            leach purification (WLP) residue of Lynas advanced materials plant (LAMP). AIP
              Conference Proceedings 1584, American Institute of Physics, Melville, NY.
            pp. 93-96.
  
           Almayahi, B., Tajuddin, A. & Jaafar, M. 2014. Measurement of
            natural radionuclides in human teeth and animal bones as markers of radiation
            exposure from soil in the Northern Malaysian peninsula. Radiation Physics
              and Chemistry 97: 55-67.
  
           Almayahi, B., Tajuddin, A. & Jaafar, M. 2012. Radiation hazard
            indices of soil and water samples in Northern Malaysian Peninsula. Applied
              Radiation and Isotopes 70: 2652- 2660.
  
           Alsaffar, M.S., Jaafar, M.S., Kabir, N.A. & Ahmad, N. 2015.
            Distribution of 226Ra, 232Th
            and 40K in rice plant components and physico-chemical effects
            of soil on their transportation to grains. Radiation Research and Applied
              Sciences 8: 300-310.
  
           Alnassar, N.A., Jaafar, M.S. & Kabir, N.A. 2017. Determination
            of concentraions of natural radionuclife in soil dan water in non-cultivated
            sites in Seberang Perai, Malaysia. IOSR-JAP 9(2): 27-35.
  
           Alzubaidi, G., Fauziah, B.S.H. & Rahman, I.A. 2016. Assessment
            of natural radioactivity levels and radiation hazards in agricultural and
            virgin soil in the State of Kedah, North of Malaysia. The Scientific World
              Journal 2016: Article ID 6178103.
  
           Aswood, M.S., Jaafar, M.S. & Sabar, B. 2013. Assessment of
            radionuclide transfer from soil to vegetables in farms from Cameron Highlands
            and Penang, (Malaysia) using neutron activation analysis. Applied Physics
              Research 5(5): 85-92.
  
           Asaduzzaman, K., Khandaker, M.U., Amin, Y.M. & Mahat, R. 2015.
            Uptake and distribution of natural radioactivity in rice from soil in north and
            west part of Peninsular Malaysia for estimation of ingestion dose to man. Annals
              of Nuclear Energy 76: 85-93.
  
           Asaduzzaman, K., Mannan, F., Khandaker, M.U., Farook, M.S., Elkezza,
            A., Amin, Y.M. & Sharma, S. 2015. Natural radioactivity levels in
            commercialized bottled drinking water and their radiological quality
            assessment. Desalination and Water Treatment 57: 11999-12009.
  
           Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari,
            I. 2009. Hazard radiologi radionuklid tabii dalam simen Portland Semenanjung
            Malaysia. Sains Malaysiana 38(3): 407-411.
  
           Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari,
            I. 2010. Penilaian risiko radiologi bahan binaan konkrit di Semenanjung
            Malaysia. Sains Malaysiana 39(4): 607-613.
  
           Beretka, J. &
            Matthew, P.J. 1985. Natural radioactivity of Australian building materials,
            industrial waste and by products. Health Physics 48: 87-95.
  
           Carini, F. &
            Bengtsson, G. 2001. Post-deposition transport of radionuclides in fruit. Journal
              of Environmental Radioactivity 55(2-3): 215-236.
  
           Gaffar, S., Ferdous,
            M.J., Begum, A. & Ullah, S.M. 2014. Transfer of natural radionuclides from
            soil to plants in North Western Parts of Dhaka. Malaysian Journal of Soil
              Science 18: 61-64.
  
           Greger, M. 2004.
            Technical report TR-04-14: Uptake of nuclides by plants. SKB, Sweedish Nuclear
            Fuel and Waste Management.
            
           Hamzah, Z., Siti,
            A.A.R. & Saat, A. 2011. Measurement of 226Ra, 228Ra and 40K in soil in
            district of kuala krai using gamma spectrometry. Malaysian Journal of
              Analytical Sciences 15(2): 159-166.
  
           IAEA. 2013. Safety
            report Series No. 78. Radiation Protection and Management of NORM Residues
              in the Phosphate Industry. Vienna: IAEA.
  
           IAEA. 2010. Technical
            Report No. 472. Handbook of Parameter Values for the Prediction of
              Radionuclide Transfer in Terrestrial and Freshwater Environment. Vienna:
            IAEA.
  
           IAEA. 1989. Technical
            Report No. 295. Measurement of Radionuclides in Food and the Environment.
            Vienna: IAEA.
  
           Ismail, N.F. &
            Ibrahim, N. 2016. Natural radioactivity in groundwater and soils in Johor,
            Malaysia ARPN. Journal of Engineering and Applied Sciences 11(18):
            10935-11039.
  
           La Torre, F.P. &
            Silari, M. 2015. Leaching of radionuclide from activated soil into groundwater. Environmental Radioactivity 143: 7-13.
  
           Majid, A.A., Aznan,
            F.I., Yasir, M.S., Redzuwan, Y. & Bahari, I. 2013. Radiological dose
            assessment of naturally occurring radioactive materials in concrete building
            materials. Radionalaytical Nuclear Chemistry 297: 277- 284.
  
           Markkanen, M. 2001.
            Challenges in harmonising controls on the radioactivity of building materials
            within the European Union. The Science of the Total Environ 272: 3-7.
  
           Masitah, A., Zaini, H.
  & Saat, A. 2005. Determination of 226Ra, 228Ra and 40K in soil from
            jengka-15 oil palm plantation. Journal of Analytical Sciences 9(1):
            126-132.
  
           Masitah, A., Zaini,
            H., Ahmad, S., Muhamat, O., W. Mohamad, W.A.K. & M. Rafi, M.S. 2004. Level
            of naturally occurring radioactive material, k-40 in oil palm’s cultivated
            soil. Journal of Nuclear and Related Technologies 1(2): 1-11.
  
           Michael, A.O.,
            Onosohwo, B.U., Mayeen, U.K., Amin, Y.M. & Faruq, G. 2014. Radiological
            study on newly developed composite corn advance lines in Malaysia. Physica
              Scripta 89: 125002.
  
           NEA-OECD. 1979. Exposure
            to Radiation from Natural Radioactivity in Building Materials. Report by
            NAE Group Expert, OECD: Paris.
  
           Priharti, W. &
            Supian, S. 2016. Radiological risk assessment from the intake of vegetables and
            fruits in Malaysia. Malaysian Journal of Analytical Sciences 20(6):
            1247-1253.
  
           Pulhani, V.A.,
            Dafauti, S. & Hegde, A.G. 2007. Leaching of uranium, radium and thorium
            from vertisol by ground water. Radionalaytical Nuclear Chemistry 274:
            341-343.
  
           Raffaella, T.,
            Ricardo, L. & Mario, D.S. 2015. Radionuclide transport in shallow
            groundwater. Progress in Nuclear Energy 85: 277-290.
  
           RIA. 2011. Radiological
            Impact Assessmant of Lynas Advanced Materials Plant 2011: Executive
            Summary, Rev. 4, November (2011).
  
           Saeed, M.A., Siti,
            S.Y., Hossain, I., Ahmed, R., Hewa, Y.A., Shahid, M. & Ramli, A.T. 2011.
            Soil to rice transfer factor of the natural radionuclides in Malaysia. Romanian
              Journal of Physics 57: 1414-1424.
  
           SA-EPA. 2005. EPA
            Guidelines: Composite Soil Sampling in Site Contamination Assessment and
            Management. Government of South Australia.
  
           Shyamal, R.C., Rezaul,
            A., Rezaur, R.A.K.M. & Rashmi, S. 2013. Radioactivity concentrations in
            soil and transfer factors of radionuclides from soil to grass and plants in the
            Chittagong City of Bangladesh. Journal of Physical Science 24(1):
            95-113.
  
           Solehah, A.R., Yasir,
            M.S. & Samat, S.B. 2016. Activity concentration, transfer factors and
            resultant radiological risk of 226Ra, 232Th, and 40K in soil and some
            vegetables consumed in Selangor, Malaysia. AIP Conference Proceedings 1784:
            040016.
  
           Tawalbeh, A.A., Samat,
            S.B. & Yasir, M.S. 2013. Radionuclides level and its radiation hazard index
            in some drinks consumed in the central zone of Malaysia. Sains Malaysiana 42(3):
            319-323.
  
           UNSCEAR. 2000. Exposures
            from Natural Radiation Sources. United Nations Scientific Committee on the
            Effects of Atomic Radiation. Report to General Assembly, With Annexes. United
            Nations, New York.
  
           UNSCEAR. 1982. Ionizing
            Radiation: Sources and Biological Effects. United Nations Scientific
            Committee on the Effects of Atomic Radiation. Report to the General Assembly,
            with annexes. New York: United Nations.
  
           US-EPA, 2002. EPA
            QA/G-5S: Guidance on Choosing a Sampling Design for Environmental Data
            Collection. U.S. Environmental Protection Agency, Washington D.C.
  
           
             
           
             
           *Pengarang
            untuk surat-menyurat; email: aznan@ukm.edu.my
  
 
             
            
           
             
             |