Sains Malaysiana 47(6)(2018): 1085–1091
http://dx.doi.org/10.17576/jsm-2018-4706-02
Oxidation of p-Cresol
by Ozonation
(Pengoksidaan p-Cresol oleh Pengozonan)
SU-HUAN KOW*, MUHAMMAD RIDWAN FAHMI, CHE ZULZIKRAMI AZNER ABIDIN, SOON-AN ONG, ABDUL HAQI IBRAHIM, SITI NASUHA SABRI
& NUR AQILAH RAZALI
School of Environmental Engineering, Universiti Malaysia
Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis Indera
Kayangan, Malaysia
Diserahkan: 22 Disember 2017/Diterima: 7 Februari 2018
ABSTRACT
Oxidation of p-Cresol was investigated by using ozonation process. The aim of this
research is to assess the effectiveness of ozonation on oxidation
of micropollutant such as p-Cresol. Ozonation performance was evaluated based on p-Cresol concentration reduction and chemical oxidation demand (COD) reduction. It was found ozonation at pH11 achieved
the highest p-Cresol degradation, with 95.8% of p-Cresol reduced and 96.0% of COD
reduced, for an initial 50 mgL-1 of p-Cresol. The degradation of p-Cresol could be expressed by second-order of kinetic model. The
second-order rate constant k increases as the initial pH increased,
but decreases with the increasing of initial p-Cresol concentrations. Besides, the absorption spectra of p-Cresol over ozonation time were analyzed by spectrophotometry. The
evolution of absorption spectra of p-Cresol degradation suggests that the oxidation of p-Cresol follows three stages mechanisms with cycloaddition as the
first step to produce aromatic intermediates followed by ring-opening
reactions, degradation of the intermediates, and subsequently achieved
mineralization.
Keywords: Absorption spectra; mechanism; micropollutant; ozonation;
p-Cresol
ABSTRAK
Pengoksidaan p-Cresol dikaji dengan menggunakan proses pengozonan. Tujuan penyelidikan ini adalah untuk menilai keberkesanan pengozonan terhadap pengoksidaan pencemar mikro seperti p-Cresol. Prestasi pengozonan dinilai berdasarkan pengurangan kepekatan p-Cresol dan pengurangan permintaan oksigen kimia (COD).
Didapati pengozonan pada pH11 mencapai kemerosotan p-Cresol tertinggi, dengan 95.8% p-Cresol dikurangkan dan 96.0% COD dikurangkan, untuk awalan
50 mgL-1 p-Cresol pada suhu bilik. Degradasi p-Cresol boleh dinyatakan oleh model kedua kinetik.
Pesanan laju pesanan kedua k meningkat apabila
pH awal meningkat, tetapi berkurangan dengan peningkatan kepekatan
p-Cresol awal. Selain
itu, spektrum penyerapan p-Cresol ke atas masa pengozonan
dianalisis spektrofotometri. Evolusi
spektrum penyerapan degradasi p-Cresol menunjukkan bahawa pengoksidaan p-Cresol mengikuti tiga peringkat mekanisme dengan
pensiklotambahan sebagai langkah pertama untuk menghasilkan perantara
aromatik diikuti oleh reaksi pembukaan cincin, kemerosotan perantaraan
dan seterusnya pemineralan.
Kata kunci: Mekanisme; pencemar mikro; pengozonan; p-Cresol; spektrum penyerapan
RUJUKAN
Abdollahi, Y., Abdullah, A.H., Zainal, Z. &
Yusof, N.A. 2012. Photocatalytic degradation of p-cresol
by zinc oxide under UV irradiation. International Journal of
Molecular Sciences 13(1): 302-315.
Agency for Toxic Substances
and Disease Registry (ATSDR). 2008. Toxicological Profile for Cresols. Atlanta, GA: U.S.
Department of Health and Human Services, Public Health Service.
Atkinson, R. 1986. Kinetics
and mechanisms of the gas-phase reactions of the hydroxyl radical with organic
compounds under atmospheric conditions. Chemical Reviews 86(1):
69-201.
Bello, I.A., Oladipo, M.A.,
Giwa, A.A. & Adeoye, D.O. 2013. Adsorptive removal of phenolics from wastewater: A review. International
Journal of Basic and Applied Science 2(1): 79-90.
Buxton, G.V., Greenstock, C.L., Helman, W.P.
& Ross, A.B. 1988. Critical review of data constants for reactions of
hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous solution. Journal of Physical and
Chemical Reference Data 17(2): 513-886.
Centers for Disease Control
and Prevention (CDC). 2007.
Centers for Disease Control and Prevention. http://www.cdc.gov/
niosh/ipcsneng/nengicsc.html. Accessed on 11 November 2014.
Das, L., Kolar, P.,
Classen, J.J. & Osborne, J.A. 2013. Adsorbents from pine wood via K2CO3-assisted
low temperature carbonization for adsorption of p-Cresol. Industrial
Crops & Products 45: 215-222.
Escudero, C.J., Iglesias,
O., Dominguez, S., Rivero, M.J. & Ortiz, I. 2017. Performance of electrochemical oxidation and
photocatalysis in terms of kinetics and energy consumption.
New insights into the p-cresol
degradation. Journal of
Environmental Management 195: 117–124.
Hoigne, J. & Bader, H. 1976. The role of
hydroxyl radical reactions in ozonation processes in aqueous solutions. Water
Research 10(5): 377-386.
Hoigne, J. & Bader, H. 1983. Rate constants
of reaction of ozone with organic and inorganic compounds in water - II:
Dissociating organic compounds. Water Research 17(2): 185-194.
Hsu, Y.C., Yang, H.C. & Chen, J.H. 2005. The effects of preozonation on the biodegradability of mixed
phenolic solution using a new gas-inducing reactor. Chemosphere 59:
1279-1287.
Kavitha, V. & Palanivelu, K. 2005. Destruction of cresols by Fenton oxidation process. Water
Research 39(13): 3062-3072.
Kurniawan, T., Lo, W. &
Chan, G. 2006. Radicals-catalyzed
oxidation reactions for degradation of recalcitrant compounds from landfill
leachate. Chemical Engineering Journal 125: 35-57.
Lewis, R.J. 2001. Cresols. Hawley’s Condensed
Chemical Dictionary 14: 306-307. New York: John Wiley and Sons.
O’Neil, M.J., Smith, A. & Heckelman, P.E.
2001. Cresols. An Encyclopedia of Chemicals, Drugs, and
Biologicals. Whitehouse Station, NJ: Merck & Co.
Olariu, R.I., Klotz, B.,
Barnes, I., Becker, K.H. & Mocanu, R. 2002. FT-IR study of the ring-retaining products from
the reaction of OH radicals with phenol , o - , m - ,
and p -cresol. Atmospheric Environment 36(22): 3685-3697.
Rattabal, K. & Grisdanurak, N. 2016.
Mechanism pathway and kinetics of p-cresol photocatalytic degradation
over titania nanorods under UV-visible irradiation. Chemical
Engineering Journal 296: 420-427.
Singh, R.K., Kumar, S., Kumar, S. & Kumar,
A. 2008. Development of parthenium based activated carbon and its utilization
for adsorptive removal of p-cresol from aqueous solution. Journal of
Hazardous Materials 155(3): 523-535.
Sun, Y., Ren, X. & Cui,
Z. 2012. The degradation mechanism of
phenol induced by ozone in wastes system. Journal of Molecular
Modeling 18(8): 3821-3830.
Surkatti, R. &
El-Naas, M.H. 2014. Biological treatment of wastewater contaminated with p-cresol
using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal
of Water Process Engineering 1: 84-90.
Tehrani-Bagha, A.R., Mahmoodi, N.M.
& Menger, F.M. 2010. Degradation
of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260(1-3): 34-38.
Turhan, K. & Uzman, S. 2008. Removal
of phenol from water using ozone. Desalination 229 (1–3):
257-263.
Valsania, M.C., Fasano, F., Richardson,
S.D. & Vincenti, M. 2012. Investigation of the degradation of cresols in the treatments with
ozone. Water Research 46(8): 2795-2804.
Wang, Y., Yang, W., Yin, X. & Liu, Y. 2016. The role of
Mn-doping for catalytic ozonation of phenol using Mn/_-Al2O3 nanocatalyst:
Performance and mechanism. Journal of Environmental Chemical Engineering 4(3):
3415-3425.
Wojnárovits, L., Földiák, G.,
D’Angelantonio, M. & Emmi, S.S. 2002. Mechanism of OH radical-induced oxidation of p- cresol to p- methylphenoxyl radical. Research on Chemical Intermediates 28(4):
373-386.
Wu, P., Li, J., Li, S. & Tao, F.M.
2012. Theoretical study of
mechanism and kinetics for the addition of hydroxyl radical to phenol. Science
China Chemistry 55(2): 270-276.
*Pengarang
untuk surat-menyurat; email: suhuan_kow@yahoo.com
|