Sains Malaysiana 47(6)(2018): 1235–1240
http://dx.doi.org/10.17576/jsm-2018-4706-19
Effect
of Gamma Irradiation on the Physical Stability of DPPC Liposomes
(Kesan
Sinaran Gama ke atas Kestabilan Fizikal Liposom DPPC)
LIYANA MOHD ALI NAPIA1, IRMAN ABDUL RAHMAN1,2*, MOHD YUSOF HAMZAH3,
FAIZAL MOHAMED1,2, HUR MUNAWAR KABIR MOHD1, INTAN SYAKEELA AHMAD BASTAMAM1, SHAMELLIA SHARIN1, NORSYAHIDAH MOHD HIDZIR1,2
& SHAHIDAN RADIMAN1,2
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Nuclear Technology
Research Center, School of Applied Physics, Faculty of Science and Technology
Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan
Malaysia
3Nanotechnology
Laboratory Radiation Technology Division, Agensi Nuklear Malaysia
43000 Kajang, Selangor Darul Ehsan, Malaysia
Diserahkan: 15 September 2016/Diterima: 17 Mac 2017
ABSTRACT
Unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC)
were prepared by the reverse-phase evaporation method and extrusion through a
polycarbonate membrane filter. Liposomes at 0.7 mg/mL lipid concentration in
deionized water were exposed to gamma irradiation at a dose in the range 0.5 to
25 kGy. Gamma irradiation of liposomes resulted in the degradation of DPPC lipids into free fatty acids, lysophosphatidylcholine and
1,2-palmitoyl-phosphatidic acid (DPPA). The effect of gamma
irradiation towards the physical stability of liposomes was investigated by means
of dynamic light scattering (DLS), transmission electron
microscopy (TEM) and zeta potential analysis. From the DLS analysis,
no significant changes were observed in the hydrodynamic size of liposomes. TEM images
indicate that the liposomes surface became smoother and rounder as higher
irradiation doses were applied. Zeta potential analysis showed that gamma
irradiation of DPPC liposomes at radiation doses as
low as 0.5 kGy resulted in a drastic rise in the magnitude of the zeta
potential. The results also demonstrate that gamma irradiation of liposomes
suspension enhanced the overall stability of liposomes. Hence, it can be
concluded that gamma irradiation on DPPC liposomes may potentially
produce liposomes with higher stability.
Keywords: Dipalmitoylphosphatidylcholine (DPPC);
gamma irradiation; physical stability; zeta potential
ABSTRAK
Liposom unilamela yang terbentuk daripada lipid
dipalmitoilfosfatidilkolina (DPPC) telah dihasilkan menggunakan
kaedah penyejatan fasa-berbalik dan penerobosan menerusi turas membran
polikarbonat. Ampaian liposom dengan kepekatan lipid 0.7 mg/mL di dalam air ternyah
ion dipancarkan sinaran gama pada dos
0.5 hingga 25 kGy. Penyinaran gama ke
atas liposom menyebabkan degradasi lipid DPPC kepada asid lemak bebas,
lisofosfatidilkolina dan 1,2-palmitoil-asid fosfatidik (DPPA).
Kesan penyinaran gama terhadap kestabilan
fizikal liposom dikaji menggunakan analisis penyerakan cahaya dinamik
(DLS),
mikroskop elektron transmisi (TEM) dan penganalisis keupayaan
zeta. Daripada analisis DLS,
tiada perubahan pada saiz liposom dapat dikenal pasti. Imej TEM menunjukkan bahawa permukaan liposom
semakin licin dan semakin membulat apabila semakin tinggi dos penyinaran
dikenakan ke atas liposom. Analisis keupayaan zeta mendedahkan
bahawa penyinaran gama ke atas liposom
DPPC
pada dos serendah 0.5 kGy menyebabkan peningkatan
drastik terhadap magnitud keupayaan zeta. Hasil analisis ini juga
menunjukkan bahawa penyinaran gama ke
atas ampaian liposom berupaya untuk meningkatkan kestabilan liposom.
Oleh itu, penyinaran gama ke atas liposom
DPPC boleh menghasilkan liposom yang
berkestabilan tinggi.
Kata kunci: Dipalmitoilfosfatidilkolina (DPPC); kestabilan fizikal; keupayaan zet;
penyinaran gama
RUJUKAN
Ainee, F.A., Irman, A.R., Hur Munawar, K.M.,
Faizal, M., Shahidan R. & Muhamad S.Y. 2015. Interaction
of hyaluronic acid (HA) with dipalmitoylphosphatidylcholine (DPPC) and its
effect on the stability of HA-lipid to gamma irradiation. Malaysian
Journal of Analytical Sciences 19(1): 173-178.
Albertini, G. &
Rustichelli, F. 1993. Effects of gamma irradiation on the liposomal structure. Liposome
Technology. 2nd ed. edited by Gregoriadis, G. Boca Raton: CRC Press. 1:
399- 429.
Barber, D.J.W. & Thomas, J.K. 1978. Reactions of radicals with lecithin bilayers. Radiation
Research 74(1): 51-65.
Erdogan, S., Ozer, A.Y.,
Ekizoglu, M., Ozalp, M., Colak, S. & Korkmaz, M. 2006. Gamma irradiation of
liposomal phospholipids. FABAD J. Pharm. Sci. 31: 182-190.
Grit, M., Underberg, W.J.M. & Crommelin,
D.J.A. 1993a. Hydrolysis of saturated soybean
phosphatidylcholine in aqueous liposome dispersions. Journal of
Pharmaceutical Sciences 82(4): 362-366.
Grit, M., Zuidam, N.J. & Crommelin, D.J.A.
1993b. Analysis and hydrolysis kinetics of phospholipids in
aqueous liposome dispersions. Liposome Technology. 2nd ed. edited
by Gregoriadis, G. Boca Raton: CRC Press. 1: 455-487.
Grit, M., Zuidam, N.J., Underberg, W.J.M. &
Crommelin, D.J.A. 1993c. Hydrolysis of partially saturated
egg phosphatidylcholine in aqueous liposome dispersions and effect of
cholesterol incorporation on hydrolysis kinetics. Journal of Pharmacy
and Pharmacology 45(6): 490-495.
Hur, M.K.M., Ainee, F.A., Faizal, M.,
Nursaidatul, S.K., Ng, W.L., Poh, R.J., Muhamad, S.Y., Mohd, H.M.I., Suria, R.,
Shahidan, R. & Irman, A.R. 2013. The effect of gamma
irradiation on the chemical structure and surface characteristics of
dipalmitoyl phosphatidylcholine (DPPC). Malaysian Journal of
Analytical Sciences 17(3): 454-460.
Pamplona, R. 2008. Membrane phospholipids,
lipoxidative damage and molecular integrity: A causal role in aging and
longevity. Biochimica et Biophysica Acta (BBA)-
Bioenergetics 1777(10): 1249-1262.
Schneider, C. 2009. An update
on products and mechanisms of lipid peroxidation. Molecular Nutrition
& Food Research 53(3): 315-321.
Stark,
G. 1991. The effect of ionizing radiation on lipid membranes. Biochimica et Biophysica Acta 1071: 103-122.
Szczes, A. 2016. Effect of the enzymatically modified
supported dipalmitoylphosphatidylcholine (DPPC) bilayers on calcium carbonate
formation. Colloid and Polymer Science 294(2): 409-419.
Szoka, F. & Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and
high capture by reverse-phase evaporation. Proceedings of the National
Academy of Sciences 75(9): 4194-4198.
Tinsley,
P.W. & Maerker, G. 1993. Effect of low-dose g-radiation
on individual phospholipids in aqueous suspension. Journal of
American Oil Chemists’ Society 70(2): 187-191.
Ulanski,
P. & Rosiak, J.M. 1999. The use of radiation technique in
the synthesis of polymeric nanogels. Nuclear Instruments and Methods
in Physics Research B: Beam Interactions with Materials and Atoms 151(1):
356-360.
Van
der Paal, J., Neyts, E.C., Verlackt, C.C.W. & Bogaerts, A.
2016. Effect of lipid peroxidation on membrane permeability of cancer and
normal cells subjected to oxidative stress. Chemical Science 7(1):
489-498.
Vernooij,
E.A.A.M., Bosch, J.J.K. & Crommelin, D.J.A. 2002. Fourier transform
infrared spectroscopic determination of the hydrolysis of poly (ethylene
glycol)- phosphatidylethanolamine-containing liposomes. Langmuir 18(9):
3466-3470.
Zuidam, N.J., Versluis, C., Vernooy, E.A.A.M. &
Crommelin, D.J.A. 1996. Gamma-irradiation of liposomes
composed of saturated phospholipids. Effect of bilayer
composition, size, concentration and absorbed dose on chemical degradation and
physical destabilization of liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1280(1): 135-148.
*Pengarang untuk
surat-menyurat; email: irman@ukm.edu.my
|