Sains Malaysiana 47(6)(2018): 1251–1257

http://dx.doi.org/10.17576/jsm-2018-4706-21

 

Kesan Suhu Celupan ke atas Mikrostruktur dan Kekerasan Salutan Aluminium

pada Keluli Karbon

(Effect of Dipping Temperature on Microstructure and Hardness of Coating Aluminium

on Carbon Steel)

 

EMEE MARINA SALLEH2, ZAIFOL SAMSU2, NORINSAN KAMIL OTHMAN1*

& AZMAN JALAR1

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 15 September 2017/Diterima: 17 Januari 2018

 

 

ABSTRAK

Keluli karbon amat mudah terkakis dalam pelbagai persekitaran terutamanya dalam keadaan berudara lembap dan suhu tinggi. Oleh sebab itu, permukaan keluli karbon perlu dilindungi dengan bahan atau logam yang mampu menangani serangan kakisan yang agresif dengan membentuk lapisan oksida dan lapisan antara logam yang bersifat pelindung. Kajian ini dijalankan untuk menentukan mikrostruktur permukaan dan kekerasan salutan aluminium (Al) tulen yang telah dihasilkan melalui teknik celupan panas. Celupan panas dalam leburan Al tulen dilakukan pada suhu berbeza untuk mendapatkan lapisan salutan yang optimum. Keputusan teknik celupan panas menunjukkan dua lapisan utama terhasil iaitu lapisan luar Al dan lapisan dalam aluminit (Fe-Al). Manakala lapisan dalam aluminida terdiri daripada dua lapisan yang berbeza iaitu lapisan nipis luar FeAl3 dan lapisan tebal dalam Fe2Al5. Keputusan daripada ujian mikrokekerasan Vickers menunjukkan bahawa nilai kekerasan lapisan aluminida meningkat dengan peningkatan suhu leburan Al manakala lapisan Al tidak menunjukkan sebarang perubahan yang ketara.

 

Kata kunci: Aluminida; celupan panas; kekerasan; keluli karbon

 

ABSTRACT

Carbon steel can easily be corroded in various environments, particularly in wet environment and at high temperature. Thus, the surface of the carbon steel must be protected by a material or metal that can form oxide surface and intermetallic layer that can preserve the carbon steel from aggresive corrosion attack. This study was performed to determine microstructure and hardness of aluminium (Al) coating that produced by hot dipping technique. The hot dipping coating using pure Al was conducted at different molten temperatures in order to attain an optimized coating layer. Two layers were formed on the surface of Al hot dipped carbon steel, the outer Al layer and the inner aluminide layer (Fe-Al). The inner aluminide layer consisted of two distinct layers which were thin FeAl3 at the outer layer and thicker Fe2Al5 on the inner layer. Microhardness of the aluminide layer values increased with increasing molten Al temperatures used and no apparent change of hardness of Al layer was obtained.

 

Keywords: Aluminide; carbon steel; hardness; hot dipping

 

 

RUJUKAN

Bindumadhavan, P.N., Makesh, S., Gowrishankar, N., Keng, W.H. & Prabhakar, O. 2000. Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications. Surface and Coatings Technology 127: 251-258.

Bouayad, A., Gerometta, C., Belkebir, A. & Ambari, A. 2003. Kinetic interactions between solid iron and molten aluminium. Materials Science and Engineering: A 363(1): 53-61.

Bouche, K., Barbier, F. & Coulet, A. 1998. Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering: A 249(1): 167-175.

Chang, Y.Y., Tsaur, C.C. & Rock, J.C. 2006. Microstructure studies of an aluminide coating on 9cr-1mo steel during high temperature oxidation. Surface and Coatings Technology 200(22): 6588-6593.

Cheng, W.J. & Wang, C.J. 2013. High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents. Applied Surface Science 274: 258-265.

Cheng, W.J. & Wang, C.J. 2011. Microstructural evolution of intermetallic layer in hot-dipped aluminide mild steel with silicon addition. Surface and Coatings Technology 205(19): 4726-4731.

Cheng, W.J. & Wang, C.J. 2009. Growth of intermetallic layer in the aluminide mild steel during hot-dipping. Surface and Coatings Technology 204(6): 824-828.

Cotell, C.M., Sprague, J.A. & Smidt, F.A. 1999. Metal Handbook on Surface Engineering. Material Park, OH: ASM International. 5: 346.

Deqing, W. 2008. Phase evolution of an aluminized steel by oxidation treatment. Applied Surface Science 254(10): 3026-3032.

Hwang, S.H., Song, J.H. & Kim, Y.S. 2005. Effects of carbon content of carbon steel on its dissolution into a molten aluminum alloy. Materials Science and Engineering: A 390(1): 437-443.

Eggeler, G., Vogel, H., Friedrich, J. & Kaesche, H. 1985. Target preparation for the transmission electron microscopic identification of the Al3Fe in hot dip aluminized low alloyed steel. Praktische Metallographie 22(4): 163-170.

El-Mahallawy, M.A., Taha, M.A., Shady, A.R., El-Sissi, A.N., Attia, W. Reif, 1997. Analysis of coating layer formed on steel strips during aluminising by hot dipping in Al-Si baths. Materials Science and Technology 13(10): 832-840.

Frutos, E., Gonzalez-Carrasco, J.L., Capdevila, C., Jimenez, J.A. & Houbaert, Y. 2009. Development of hard intermetallic coatings on austenitic stainless steel by hot dipping in an Al–Si alloy. Surface and Coatings Technology 203(19): 2916-2920.

Glasbrenner, H., Nold, E. & Voss, Z. 1997. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation. Journal of Nuclear Materials 249(1): 39-45.

Kattner, U.R. & Burton, B.P. 1999. Binary Alloy Phase Diagrams. Material Park, OH: ASM International.

Kobayashi, S. & Yakou, T. 2002. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Materials Science and Engineering: A 338(1): 44-53.

Massalski, T.B. 1990. Binary Alloy Phase Diagram. 2. Material Park,OH: ASM International.

Mondolfo, L.F. 1976. Aluminum Alloy: Structure and Properties. N.A.: Butterworth & Co Ltd.

Oni, B., Egiebor, N., Ekekwe, N. & Chuku, A. 2008. Corrosion behavior of tin-plated carbon steel and aluminum in nacl solutions using electrochemical impedance spectroscopy. Journal of Minerals and Materials Characterization and Engineering 7(4): 331.

Pradhan, D., Manna, M., Dutta, M., 2014. Al–Mg–Mn Alloy Coating on Steel with Superior Corrosion Behavior. Surface and Coatings Technology 258: 405-414.

Richards, R.W., Jones, R.D., Clements, P.D. & Clarke, H. 1994. Metallurgy of continuous hot dip aluminizing. International Materials Review 39(5): 191-212.

Samsu, Z., Othman, N.K., Daud, A.R. & Daud, M. 2014. Properties and growth rate of intermetallic Al-Fe through hot dipped aluminizing. Advanced Materials Research 980: 3-7.

Sasaki, T. & Yakou, T. 2006. Features of intermetallic compounds in aluminized steels formed using aluminum foil. Surface and Coatings Technology 201(6): 2131-2139.

Schmid, B., Aas, N., Grong, O. & Odegard, R. 2002. High-temperature oxidation of iron and the decay of wüstite studied with in situ esem. Oxidation of Metals 57(1-2): 115- 130.

Springer, H., Kostka, A., Payton, E.J., Raabe, D., Kaysser-Pyzalla, A. & Eggeler, G. 2011. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Materialia 59(4): 1586-1600.

Takata, N., Nishimoto, M., Kobayashi, S. & Takeyama, M. 2014. Morphology and formation of Fe–Al intermetallic layers on iron hot-dipped in Al–Mg–Si alloy melt. Intermetallics 54: 136-142.

Taniguchi, S., Hongawara, N. & Shibata, T. 2001. Influence of water vapour on the isothermal oxidation behaviour of tial at high temperatures. Materials Science and Engineering: A 307(1): 107-112.

Wang, C.J., Lee, J.W. & Twu, T.H. 2003. Corrosion behaviors of low carbon steel, SUS310 and Fe-Mn-Al alloy with hot-dipped aluminum coatings in NaCl-induced hot corrosion. Surface and Coatings Technology 163: 37-43.

Wang, D. & Shi, Z. 2004. Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied Surface Science 227(1): 255-260.

Yajiang, L., Juan, W., Yonglan, Z. & Holly, X. 2002. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel. Buletin Material Science 25(7): 635-639.

Yousaf, M., Iqbal, J. & Ajmal, M. 2011. Variables affecting growth and morphology of the intermetallic layer (Fe2Al5). Materials Characterization 62(5): 517-525.

 

 

*Pengarang untuk surat-menyurat; email: insan@ukm.my

 

 

 

 

sebelumnya