Sains Malaysiana 47(6)(2018): 1251–1257
http://dx.doi.org/10.17576/jsm-2018-4706-21
Kesan Suhu Celupan ke atas Mikrostruktur dan
Kekerasan Salutan Aluminium
pada Keluli Karbon
(Effect of Dipping Temperature on Microstructure
and Hardness of Coating Aluminium
on Carbon Steel)
EMEE MARINA SALLEH2, ZAIFOL SAMSU2, NORINSAN KAMIL OTHMAN1*
& AZMAN JALAR1
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Institute of
Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan
Malaysia
43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 15 September
2017/Diterima: 17 Januari 2018
ABSTRAK
Keluli
karbon amat mudah terkakis dalam pelbagai persekitaran terutamanya dalam
keadaan berudara lembap dan suhu tinggi. Oleh sebab itu, permukaan keluli karbon perlu dilindungi dengan
bahan atau logam yang mampu menangani serangan kakisan yang agresif dengan
membentuk lapisan oksida dan lapisan antara logam yang bersifat pelindung. Kajian ini dijalankan untuk menentukan mikrostruktur
permukaan dan kekerasan salutan aluminium (Al) tulen yang telah dihasilkan
melalui teknik celupan panas. Celupan panas dalam
leburan Al tulen dilakukan pada suhu berbeza untuk mendapatkan lapisan salutan
yang optimum. Keputusan teknik celupan panas
menunjukkan dua lapisan utama terhasil iaitu lapisan luar Al dan lapisan dalam
aluminit (Fe-Al). Manakala lapisan dalam aluminida
terdiri daripada dua lapisan yang berbeza iaitu lapisan nipis luar FeAl3 dan
lapisan tebal dalam Fe2Al5. Keputusan daripada ujian mikrokekerasan Vickers menunjukkan bahawa
nilai kekerasan lapisan aluminida meningkat dengan peningkatan suhu leburan Al
manakala lapisan Al tidak menunjukkan sebarang perubahan yang ketara.
Kata kunci: Aluminida; celupan
panas; kekerasan; keluli karbon
ABSTRACT
Carbon steel can easily be corroded
in various environments, particularly in wet environment and at high
temperature. Thus, the surface of the carbon steel must be protected by a
material or metal that can form oxide surface and intermetallic layer that can
preserve the carbon steel from aggresive corrosion attack. This study was
performed to determine microstructure and hardness of aluminium (Al) coating
that produced by hot dipping technique. The hot dipping coating using pure Al
was conducted at different molten temperatures in order to attain an optimized
coating layer. Two layers were formed on the surface of Al hot dipped carbon
steel, the outer Al layer and the inner aluminide layer (Fe-Al). The inner
aluminide layer consisted of two distinct layers which were thin FeAl3 at
the outer layer and thicker Fe2Al5 on
the inner layer. Microhardness of the aluminide layer values increased with
increasing molten Al temperatures used and no apparent change of hardness of Al
layer was obtained.
Keywords:
Aluminide; carbon steel; hardness; hot dipping
RUJUKAN
Bindumadhavan,
P.N., Makesh, S., Gowrishankar, N., Keng, W.H. & Prabhakar, O. 2000.
Aluminizing and subsequent nitriding of plain carbon low alloy steels for
piston ring applications. Surface and Coatings Technology 127: 251-258.
Bouayad, A., Gerometta, C., Belkebir, A. & Ambari, A. 2003. Kinetic interactions between solid iron and molten aluminium. Materials Science and Engineering: A 363(1): 53-61.
Bouche, K., Barbier, F. & Coulet, A. 1998. Intermetallic compound layer growth between solid iron and molten
aluminium. Materials Science and Engineering: A 249(1): 167-175.
Chang, Y.Y.,
Tsaur, C.C. & Rock, J.C. 2006. Microstructure studies of an aluminide
coating on 9cr-1mo steel during high temperature oxidation. Surface and
Coatings Technology 200(22): 6588-6593.
Cheng,
W.J. & Wang, C.J. 2013. High-temperature oxidation
behavior of hot-dipped aluminide mild steel with various silicon contents. Applied Surface Science 274: 258-265.
Cheng, W.J.
& Wang, C.J. 2011. Microstructural evolution of
intermetallic layer in hot-dipped aluminide mild steel with silicon addition. Surface and Coatings Technology 205(19): 4726-4731.
Cheng, W.J.
& Wang, C.J. 2009. Growth of intermetallic layer in the aluminide mild
steel during hot-dipping. Surface and Coatings
Technology 204(6): 824-828.
Cotell,
C.M., Sprague, J.A. & Smidt, F.A. 1999. Metal Handbook on Surface Engineering. Material
Park, OH: ASM International. 5: 346.
Deqing, W. 2008. Phase
evolution of an aluminized steel by oxidation treatment. Applied Surface
Science 254(10): 3026-3032.
Hwang, S.H., Song, J.H.
& Kim, Y.S. 2005. Effects of carbon content of carbon steel on its
dissolution into a molten aluminum alloy. Materials Science and Engineering:
A 390(1): 437-443.
Eggeler,
G., Vogel, H., Friedrich, J. & Kaesche, H. 1985. Target preparation for
the transmission electron microscopic identification of the Al3Fe
in hot dip aluminized low alloyed steel. Praktische Metallographie 22(4):
163-170.
El-Mahallawy,
M.A., Taha, M.A., Shady, A.R., El-Sissi, A.N., Attia, W. Reif, 1997. Analysis of coating layer
formed on steel strips during aluminising by hot dipping in Al-Si
baths. Materials Science and Technology 13(10): 832-840.
Frutos,
E., Gonzalez-Carrasco, J.L., Capdevila, C., Jimenez, J.A. &
Houbaert, Y. 2009.
Development of hard intermetallic coatings on
austenitic stainless steel by hot dipping in an Al–Si alloy.
Surface and Coatings Technology 203(19): 2916-2920.
Glasbrenner, H., Nold,
E. & Voss, Z. 1997. The influence of alloying elements on
the hot-dip aluminizing process and on the subsequent high-temperature
oxidation. Journal of Nuclear Materials 249(1): 39-45.
Kattner, U.R. &
Burton, B.P. 1999. Binary Alloy Phase Diagrams. Material Park, OH: ASM International.
Kobayashi,
S. & Yakou, T. 2002. Control of intermetallic compound layers
at interface between steel and aluminum by diffusion-treatment. Materials
Science and Engineering: A 338(1): 44-53.
Massalski, T.B. 1990. Binary Alloy Phase Diagram. 2. Material Park,OH: ASM International.
Mondolfo, L.F. 1976. Aluminum
Alloy: Structure and Properties. N.A.: Butterworth & Co Ltd.
Oni,
B., Egiebor, N., Ekekwe, N. & Chuku, A. 2008. Corrosion
behavior of tin-plated carbon steel and aluminum in nacl solutions
using electrochemical impedance spectroscopy. Journal
of Minerals and Materials Characterization and Engineering 7(4):
331.
Pradhan,
D., Manna, M., Dutta, M., 2014. Al–Mg–Mn Alloy Coating on Steel
with Superior Corrosion Behavior. Surface and Coatings Technology 258:
405-414.
Richards,
R.W., Jones, R.D., Clements, P.D. & Clarke, H. 1994. Metallurgy
of continuous hot dip aluminizing. International Materials Review 39(5):
191-212.
Samsu,
Z., Othman, N.K., Daud, A.R. & Daud, M. 2014. Properties and growth
rate of intermetallic Al-Fe through hot dipped aluminizing. Advanced
Materials Research 980: 3-7.
Sasaki,
T. & Yakou, T. 2006. Features of intermetallic compounds in aluminized steels
formed using aluminum foil. Surface and Coatings Technology 201(6):
2131-2139.
Schmid,
B., Aas, N., Grong, O. & Odegard, R. 2002. High-temperature
oxidation of iron and the decay of wüstite studied with in situ esem. Oxidation
of Metals 57(1-2): 115- 130.
Springer,
H., Kostka, A., Payton, E.J., Raabe, D., Kaysser-Pyzalla, A. & Eggeler, G.
2011. On the formation and growth of intermetallic phases during interdiffusion
between low-carbon steel and aluminum alloys. Acta Materialia 59(4):
1586-1600.
Takata,
N., Nishimoto, M., Kobayashi, S. & Takeyama, M. 2014. Morphology and
formation of Fe–Al intermetallic layers on iron hot-dipped in
Al–Mg–Si alloy melt. Intermetallics 54: 136-142.
Taniguchi,
S., Hongawara, N. & Shibata, T. 2001. Influence of water vapour on the
isothermal oxidation behaviour of tial at high temperatures. Materials
Science and Engineering: A 307(1): 107-112.
Wang,
C.J., Lee, J.W. & Twu, T.H. 2003. Corrosion behaviors of low carbon steel, SUS310
and Fe-Mn-Al alloy with hot-dipped aluminum coatings in NaCl-induced hot corrosion. Surface and Coatings Technology 163: 37-43.
Wang, D. & Shi, Z.
2004. Aluminizing and oxidation treatment of 1Cr18Ni9
stainless steel. Applied Surface Science 227(1): 255-260.
Yajiang, L., Juan, W.,
Yonglan, Z. & Holly, X. 2002. Fine structures in Fe3Al
alloy layer of a new hot dip aluminized steel. Buletin Material Science 25(7):
635-639.
Yousaf,
M., Iqbal, J. & Ajmal, M. 2011. Variables affecting growth
and morphology of the intermetallic layer (Fe2Al5). Materials Characterization 62(5): 517-525.
*Pengarang untuk surat-menyurat; email: insan@ukm.my
|