Sains Malaysiana 47(6)(2018): 1303–1310
http://dx.doi.org/10.17576/jsm-2018-4706-27
Tensile Properties, Biodegradability and
Bioactivity of Thermoplastic Starch (TPS)/ Bioglass Composites for Bone Tissue
Engineering
(Sifat Tegangan,
Keterbiodegradan dan Kebioaktifan Komposit Kanji Termoplastik (TPS)/Biokaca
untuk Kejuruteraan Tisu Tulang)
SYED NUZUL
FADZLI
SYED
ADAM1*,
AZLIN
FAZLINA
OSMAN2
& ROSLINDA SHAMSUDIN1
1School of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2Center of Excellence Geopolymer and Green
Technology (CEGeoGTech), School of Materials Engineering, Universiti Malaysia
Perlis (UniMAP), 02600 Jejawi, Arau, Perlis Indera Kayangan
Malaysia
Diserahkan: 3 Oktober 2017/Diterima: 26
Januari 2018
ABSTRACT
Composite fabricated from the combination
of biodegradable polymer and bioactive filler is beneficial for
bone tissue engineering if the biomaterial can perform similar characteristics
of the natural inorganic-organic structures of bone. In this study,
we have investigated the thermoplastic starch (TPS)/sol-gel derived bioglass
composite as new biomaterial for bone tissue engineering. The composites
were produced using selected TPS/bioglass mass ratio of 100/0, 95/5,
90/10, 85/15 and 80/20 by a combination of solvent casting and salt
leaching techniques. Tensile test results showed the addition of
bioglass increased the tensile strength and Young's modulus, but
reduced the elongation at break of the samples. The modulus
of all samples were higher than the requirement for cancellous
bone (10-20 MPa). The SEM
imaging showed the presence of porous structure on
the surface of all samples. XRD
results confirmed the formation of hydroxycarbonate
apatite (HCA)
layer on the surface of bioglass containing samples; indicating
the occurrence of surface reactions when the samples were immersed
in Simulated Body Fluid (SBF). Furthermore, the presence of P-O
stretch band in FTIR spectrum
between 1000 and 1150 cm-1 and
Si-O-Si stretch band at 1000 cm-1 also
proved the bioactivity of TPS/bioglass composite. The in vitro biodegradability
analysis shows the biodegradability of TPS/bioglass composite decreases
with increasing mass ratio of the bioglass.
Keywords: Bioactivity;
biodegradability; bioglass; polymer composite; thermoplastic starch
ABSTRAK
Komposit yang
difabrikasikan daripada gabungan polimer terbiodegradasi dan pengisi
bioaktif adalah berfaedah untuk kejuruteraan tisu tulang jika bahan
bio tersebut boleh menghasilkan ciri-ciri yang serupa dengan struktur
inorganik-organik semula jadi tulang. Di dalam kajian ini, kami mengkaji komposit kanji termoplastik
(TPS)/biokaca
berasaskan sol-gel sebagai bahan bio baharu untuk kejuruteraan tisu
tulang. Komposit tersebut dihasilkan mengikut nisbah berat
yang terpilih iaitu 100/0, 95/5, 90/10, 85/15 dan 80/20 dengan menggunakan
gabungan teknik penuangan pelarut dan larut lesap garam. Keputusan
ujian tegangan mendedahkan penambahan biokaca dalam matriks TPS telah
meningkatkan kekuatan tegangan dan modulus Young di samping merendahkan
pemanjangan takat putus sampel. Modulus
semua sampel adalah lebih tinggi daripada nilai diperlukan tulang
berongga. Pengimejan SEM mendedahkan kewujudan struktur berliang
di permukaan semua sampel. Keputusan
XRD
mengesahkan pembentukan lapisan hidroksikarbonat apatit
(HCA)
pada permukaan sampel mengandungi biokaca, menunjukkan berlakunya
reaksi permukaan apabila sampel direndam dalam cecair badan simulasi
(SBF).
Tambahan pula, spektrum FTIR menunjukkan kehadiran jalur regangan
P-O antara 1000 dan 1150 cm-1 dan
jalur regangan Si-O-Si pada 1000 cm-1, juga membuktikan sifat
bioaktif komposit TPS/ biokaca. Analisis
keterbiodegradasian in vitro pada
komposit menunjukkan keterbiodegradasian komposit TPS/biokaca
berkurangan dengan peningkatan nisbah berat biokaca.
Kata
kunci: Biokaca; kanji termoplastik (TPS); bioaktiviti; keterbiodegradan; komposit
polimer
RUJUKAN
Allo,
B.A., Costa, D.O., Dixon, S.J., Mequanint, K. & Rizkalla, A.S. 2012. Bioactive and
biodegradable nanocomposites and hybrid biomaterials for bone regeneration. Journal
of Functional Biomaterials 3(4): 432–463.
Arjmandi,
R., Hassan, A., Majeed, K. & Zakaria, Z. 2015. Rice husk filled
polymer composites. International Journal of Polymer
Science 2015. Article ID.
501471.
Bao, C.L.M., Teo, E.Y.,
Chong, M.S.K., Liu, Y., Choolani, M. & Chan, J.K.Y. 2013. Advances in bone tissue engineering. In Regenerative
Medicine and Tissue Engineering (Book Chapter), edited by Andrades, J.A.
www.intechopen.com. pp. 599-614.
Black, C.R.M.,
Goriainov, V., Gibbs, D., Kanczler, J., Tare, R.S. & Oreffo, R.O.C. 2015. Bone tissue engineering. Current Molecular Biology
Reports 3: 132-140.
Borges,
J.A., Romani, V.P., Cortez-Vega, W.R. & Martins, V.G. 2015. Influence of different
starch sources and plasticizers on properties of biodegradable films. International
Food Research Journal 22(6): 2346-2351.
Burg,
K.J., Porter, S. & Kellam, J.F. 2000. Biomaterial
developments for bone tissue engineering. Biomaterials 21(23):
2347-2359.
Cancedda,
R., Giannoni, P. & Mastrogiacomo, M. 2007. A tissue engineering
approach to bone repair in large animal models and in clinical practice. Biomaterials 28(29): 4240-4250.
Dai,
H., Chang, P.R., Yu, J. & Ma, X. 2008. N,N-Bis(2-
hydroxyethyl)formamide as a new plasticizer for thermoplastic starch. Starch 60(12): 676-684.
Fadzli, S.A.S.N.,
Roslinda, S., Zainuddin, F. & Ismail, H. 2016. Synthesis of sol-gel derived
glass powder and in vitro bioactivity property tested in simulated body
fluid. AIP Conference Proceedings 1784 Art. No:
040033.
Félix,
A., Almeida, E. De, Cristina, E. & Ortega, A. 2011. Synthesis of
chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for
guided tissue regeneration purposes. Applied Surface Science 257:
3888-3892.
Fu,
Q., Saiz, E., Rahaman, M.N. & Tomsia, A.P. 2011. Bioactive glass
scaffolds for bone tissue engineering: State of the art and future
perspectives. Materials Science & Engineering C 31(7): 1245-1256.
Hench, L.L. &
Wilson, J. 2013. An Introduction to Bioceramics. 2nd ed. London: Imperial College Press.
Hutmacher, D.W. 2001.
Scaffold design and fabrication technologies for engineering tissues - state of
the art and future perspectives. Journal of Biomaterials Science, Polymer
Edition 12(1): 107-124.
Jahan,
K. & Tabrizian, M. 2016. Composite biopolymers for
bone regeneration enhancement in bony defects. Biomaterial Science 4(1):
25-39.
Jones,
J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V., Smith, M.E. & Newport, R.J.
2010. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proceeding Inst. Mech. Eng. H. 224: 1373-1387.
Kokubo, T. & Hiroaki
Takadama, H. 2006. How useful is SBF in predicting in vivo bone
bioactivity? Biomaterials 27: 2907-2915.
Laurencin,
C., Khan, Y., Kofron, M., Al-Amin, S., Botchwey, E., Yu, X. & Cooper, J.J.
2006. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: A
15-year perspective. Clinical Orthopaedics and Related Research 447:
221-236.
Martins,
A.M., Alves, C.M., Kasper, F.K., Mikos, A.G. & Reis, R.L. 2010. Responsive and in
situ-forming chitosan scaffolds for bone tissue engineering applications:
An overview of the last decade. Journal of Materials Chemistry 20:
1638-1645.
Mehrali,
M., Moghaddam, E. & Seyed Shirazi, S.F. 2014. Mechanical and in
vitro biological performance of graphene nanoplatelets reinforced calcium
silicate composite. PLOS ONE 9(9): e106802.
Ramazan,
K. & Joseph Irudayaraj, K.S. 2002. Characterization of irradiated starches
by using ft-Raman and FTIR spectroscopy. Agriculture and Food Chemistry 50:
3912-3918.
Rezwan, K., Chen, Q.Z.,
Blaker, J.J. & Roberto, A. 2006. Biodegradable and bioactive porous polymer
/ inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:
3413–3431.
Shi, R., Ding, T., Liu,
Q. & Han, Y. 2006. In vitro degradation and swelling behaviour of
rubbery thermoplastic starch in simulated body and simulated saliva fluid and
effects of the degradation products on cells. 91. Polymer Degradation and
Stability 91(12): 3289-3300.
Xu, J., Liu, L. &
De, Z.X. 2015. Promoting bone-like apatite formation on titanium alloys through
nanocrystalline tantalum nitride coatings. Journal of Materials Chemistry B 3:
4082-4094.
Zeng, H. & Lace, W.R.
2000. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic
coatings: The effects of various process parameters. Biomaterial 21:
23-30.
*Pengarang untuk
surat-menyurat: syed.nuzul@unimap.edu.my
|