Sains Malaysiana 47(6)(2018): 1327–1335
http://dx.doi.org/10.17576/jsm-2018-4706-30
Discrete Hopfield Neural Network in Restricted
Maximum k-Satisfiability Logic Programming
(Rangkaian Neural Hopfield Diskret dalam
Pengaturcaraan Logik Maksimum
k-Kepuasan Terhad)
MOHD SHAREDUWAN
MOHD
KASIHMUDDIN1*, MOHD
ASYRAF
MANSOR2
& SARATHA
SATHASIVAM1
1Pusat Pengajian Sains Matematik, Universiti
Sains Malaysia, 11800 USM, Pulau Pinang
Malaysia
2Pusat Pengajian Pendidikan Jarak Jauh, Universiti
Sains Malaysia, 11800 USM, Pulau Pinang
Malaysia
Diserahkan: 19 Ogos 2017/Diterima: 19
Januari 2018
ABSTRACT
Maximum k-Satisfiability
(MAX-kSAT)
consists of the most consistent interpretation that generate the maximum number of satisfied clauses. MAX-kSAT is an important
logic representation in logic programming since not all combinatorial problem
is satisfiable in nature. This paper presents Hopfield Neural Network based on MAX-kSAT
logical rule. Learning of Hopfield Neural Network will be integrated with Wan
Abdullah method and Sathasivam relaxation method to obtain the correct final
state of the neurons. The computer simulation shows that MAX-kSAT
can be embedded optimally in Hopfield Neural Network.
Keywords: Hopfield Neural Network;
Maximum k-Satisfiability; Wan Abdullah method
ABSTRAK
Maksimum k-Kepuasan
(MAX-kSAT)
terdiri daripada penyelesaian yang paling konsisten untuk menghasilkan
bilangan klausa yang betul secara maksimum. MAX-kSAT merupakan perwakilan logik yang penting
dalam pengaturcaraan logik kerana tidak semua masalah kombinatori
boleh dipuaskan. Artikel ini membentangkan
Rangkaian Neural
Hopfield berdasarkan peraturan logik MAX-kSAT. Pembelajaran Rangkaian Neural Hopfield akan diintegrasikan dengan kaedah Wan Abdullah dan kaedah
rehat Sathasivam untuk mendapatkan tahap akhir neuron yang betul.
Simulasi komputer menunjukkan bahawa MAX-kSAT boleh diintegrasi secara optimum dalam Rangkaian Neural Hopfield.
Kata kunci: Kaedah Wan Abdullah; maksimum k-Kepuasan; Rangkaian Neural Hopfield
RUJUKAN
Abdul Rahman, N. 2017. Binomial distribution of 2sat interpretation. Private
Communication.
Alzaeemi,
S.A., Sathasivam, S., Adebayo, S.A., Kasihmuddin, M.S.M. & Mansor, M.A.
2017. Kernel machine to doing logic programming in hopfield network for solve non
horn problem-3sat. MOJ Applied Bionics and Biomechanics 1(1): 1-6.
Berg,
J. & Järvisalo, M. 2015. Cost-optimal constrained correlation clustering
via weighted partial maximum satisfiability. Artificial Intelligence 244:
110-142.
Borchers, B. &
Furman, J. 1998. A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems. Journal of Combinatorial Optimization 2(4): 299-306.
Bouhmala,
N. 2016. A variable neighbourhood search structure based-genetic algorithm for
combinatorial optimisation problems. International Journal of Intelligent
Systems Technologies and Applications 15(2): 127-146.
Feige,
U. & Goemans, M. 1995. Approximating the value of two power proof
systems, with applications to max 2sat and max dicut. In Theory
of Computing and Systems Proceedings, Third Israel Symposium. pp.
182-189.
Hamadneh,
N., Sathasivam, S., Tilahun, S.L. & Choon, O.H. 2012. Learning logic
programming in radial basis function network via genetic algorithm. Journal
of Applied Sciences 12(9): 840-847.
Hölldobler,
S., Kalinke, Y. & Störr, H.P. 1999. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence 11(1):
45-58.
Hopfield, J.J. &
Tank, D.W. 1985. Neural computation of decisions in
optimization problems. Biological Cybernatics 52: 141-152.
Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of
Sciences 79(8): 2554-2558.
Imada, A. & Araki,
K. 1998. What does the landscape of a Hopfield associative memory look like? International Conference on Evolutionary Programming. pp. 647-656.
Ionescu, L.M., Mazare,
A.G. & Serban, G. 2010. VLSI Implementation of an associative addressable
memory based on Hopfield network model. IEEE Semiconductor Conference 2:
499-502.
Kasihmuddin, M.S.M.
& Sathasivam, S. 2016. Accelerating activation function in higher order
logic programming. Advance in Industrial and Applied Mathematics:
Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences
(SKSM23) 1750: 030008-1–030008-6 https://doi. org/10.1063/1.4954544.
Kasihmuddin, M.S.M.,
Mansor, M.A. & Sathasivam, S. 2017. Hybrid genetic
algorithm in the Hopfield network for logic satisfiability problem. Pertanika
Journal of Science & Technology 25(1): 139-152.
Kowalski, R.A. 1979. Logic for Problem Solving. New York: Elsevier
Science Publishing,
Kumar, S. & Singh,
M.P. 2010. Pattern recall analysis of the Hopfield network
with a genetic algorithm. Computer and Mathematic with Applications 60:
1049-1057.
Layeb, A., Deneche, A.H.
& Meshoul, S. 2010. A new artificial immune
system for solving the maximum satisfiability problem. In
Trends in Applied Intelligent Systems. Berlin, Heidelberg:
Springer. pp. 136-142.
Liu, S. & de Melo,
G. 2017. Should algorithms for random sat and max-sat be different? AAAI. pp.
3915-3921.
Madsen, B.A. &
Rossmanith, P. 2004. Maximum exact satisfiability: NP-completeness proofs and
exact algorithms. BRICS Report Series 04(19): 1-20.
Mansor, M.A. &
Sathasivam, S. 2016. Performance analysis of activation
function in higher order logic programming. Advance in Industrial and
Applied Mathematics: Proceedings of 23rd Malaysian National Symposium of
Mathematical Sciences (SKSM23) 1750: 030007-1–030007-7 https://doi.
org/10.1063/1.4954543.
Mathias, A.C. &
Rech, P.C. 2012. Hopfield neural network: The Hyperbolic tangent and the
piecewise-linear activation functions. Neural Networks 34: 42-45.
Menaï,
M.E.B. & Batouche, M. 2005. A backbone-based co-evolutionary heuristic for
partial MAX-SAT. In Artificial Evolution. Berlin Heidelberg:
Springer. pp. 155-166.
Muezzinoglu, M.K.,
Guzelis, C. & Zurada, J.M. 2003. A new design method for
the complex-valued multistate Hopfield associative memory. IEEE
Transactions on Neural Networks 14(4): 891-899.
Pinkas, G. & Dechter,
R. 1995. Improving connectionist energy minimization, J. Artif. Intell. Res.
(JAIR) 3: 223-248.
Pinkas, G. 1991. Symmetric neural networks and propositional logic satisfiability. Neural Computation 3(2): 282-291.
Pipatsrisawat,
K., Palyan, A., Chavira, M., Choi, A. & Darwiche, A. 2008. Solving weighted
Max-SAT problems in a reduced search space: A performance analysis. Journal
on Satisfiability, Boolean Modeling and Computation 4: 191- 217.
Raman,
V., Ravikumar, B. & Rao, S.S. 1998. A simplified NP-complete
MAXSAT problem. Information Processing Letters 65(1): 1-6.
Rojas, R. 1996. Neural
Networks: A Systematic Introduction. Berlin: Springer.
Santra,
S., Quiroz, G., Ver Steeg, G. & Lida, D.A. 2014. Max 2-sat with up to
108 qubits. New Journal of Physics 16(4): 045006.
Sathasivam, S. &
Fen, N.P. 2013. Developing agent based modelling for doing logic programming in
Hopfield network. Applied Mathematical Sciences 7(1): 23-35.
Sathasivam,
S. & Velavan, M. 2014. Boltzmann Machine and Hyperbolic Activation
Function in Higher Order Network. Modern Applied Science 8(3): 140.
Sathasivam, S. & Wan
Abdullah, A.T.W. 2007. Flatness of the energy landscape for
horn clauses. Matematika 23: 147-156.
Sathasivam, S. 2008. Learning
in the recurrent Hopfield network. Computer Graphics, Imaging
and Visualisation, CGIV'08. Fifth International
Conference on IEEE.pp. 323-328.
Sathasivam, S. 2010. Upgrading
logic programming in Hopfield network. Sains Malaysiana 39(1):
115-118.
Sathasivam, S. 2011. Boltzmann machine and new activation function comparison. Applied
Mathematical Sciences 5(78): 3853-3860.
Sulehria, H.K. &
Zhang, Y. 2007. Hopfield neural networks: A survey. Proceedings of the 6th
Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases. pp. 125-130.
Velavan, M., Yahya,
Z.R., Abdul Halif, M.N. & Sathasivam, S. 2016. Mean field theory in doing
logic programming using hopfield network. Modern Applied Science 10(1):
154-160.
Wan
Abdullah, A.T.W. 1992. Logic programming on a neural network. International Journal of Intelligent Systems 7(6): 513-519.
Wan Abdullah, A.T.W. 1993. The logic of neural networks. Physics Letters A 176(3-4):
202-206.
Yannakakis, M. 1994. On
the approximation of maximum satisfiability. Journal of Algorithms 17(3):
475-502.
Zeng, X. &
Martinez, T. 1999. A new relaxation procedure in the hopfield network for solving
optimization problems. Neural Processing Letters 10(3): 211-222.
Zhang, H., Hou, Y.,
Zhao, J., Wang, L., Xi, T. & Li, Y. 2017. Automatic welding quality classification
for the spot welding based on the hopfield associative memory neural network
and chernoff face description of the electrode displacement signal features. Mechanical
Systems and Signal Processing 85: 1035-1043.
*Pengarang untuk surat-menyurat;
email: shareduwan@usm.my
|