| Sains Malaysiana 47(7)(2018): 1465–1471
          
         http://dx.doi.org/10.17576/jsm-2018-4707-14 
                 
             
           Transformasi Gen Proteolisis 6 
              (PRT6) Berperantarakan Agrobacterium 
              tumefaciens ke dalam Kotiledon Tomato kultivar Micro Tom 
                 (Agrobacterium tumefaciens Mediated Transformation 
              of the Proteolysis 6 (PRT6) Geneinto Cotyledons of Tomato cv. Micro Tom)
 
             
           INTAN ELYA SUKA1, NUR FARHANA ROSLAN1, BEE LYNN CHEW2, HOE HAN GOH3,
            
           ZAMRI ZAINAL1,3 & NURULHIKMA MD ISA1*
            
           
             
           1Pusat Pengajian Biosains dan Bioteknologi, Fakulti Sains dan
            Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
            Ehsan, Malaysia
            
           
             
           2Pusat Pengajian Sains Kajihayat, Universiti Sains Malaysia,
            Minden, 11800 Georgetown, Penang, Malaysia
            
           
             
           3Institut Biologi Sistem, Universiti Kebangsaan Malaysia, 43600
            UKM Bangi, Selangor Darul Ehsan, Malaysia
            
            
            
           Diserahkan: 15 September 2017/Diterima: 7
            Mac 2018
            
           
             
           ABSTRAK
            
           Gen Proteolisis 
              6 (PRT6) merupakan 
              gen yang memainkan peranan penting dalam tapak jalan N-end rule 
              dan berfungsi sebagai enzim E3 ligase. PRT6 berperanan 
              dalam pengenalan protein sasaran bagi proses degradasi. Objektif 
              utama kajian ini adalah untuk mentransformasi konstruk RNAi 
              PRT6 ke dalam tomato berperantarakan Agrobacterium 
              tumefaciens. Ini bertujuan untuk memahami peranan tapak jalan 
              N-end rule semasa proses pemasakan buah. Beberapa faktor 
              yang memberi kesan kepada transformasi seperti masa ko-penanaman 
              dan juga kepekatan antibiotik yang digunakan telah dioptimumkan. 
              Keputusan kajian menunjukkan pengeraman kotiledon selama 48 jam 
              pada medium ko-penanaman dapat meningkatkan penghasilan kalus sebanyak 
              61% manakala penggunaan 500 mg/L antibiotik karbenisilin dalam medium 
              regenerasi pucuk dapat mengurangkan kontaminasi A. tumefaciens 
              sehingga 5.2%. Selain itu, strain A. tumefaciens C58 merupakan 
              strain A. tumefaciens yang paling sesuai digunakan sebagai 
              perantara dalam kajian ini. Tindak balas berantai polimerase (PCR) telah dijalankan pada pucuk yang 
              terhasil untuk mengesahkan integrasi fragmen PRT6 
              ke dalam genom tomato. Berdasarkan analisis PCR, 
              kesemua tujuh pucuk putatif transgenik adalah merupakan transforman 
              positif.   
             
           Kata kunci: Antibiotik; A. tumefaciens; 
              kalus; ko-penanaman; Proteolisis 6   
             
           ABSTRACT
            
           Proteolysis 
              6 (PRT6) gene plays an important role in the 
              N-end rule pathway which functions as an E3 ligase enzyme. 
              PRT6 functions to recognise target proteins 
              for degradation. The main objective of this study is to transform 
              the PRT6 RNAi construct through Agrobacterium tumefaciens 
              into tomato. The purpose of this study was to understand the role 
              of the N-end rule pathway during fruit ripening. Several factors 
              affecting transformation efficiency such as co-cultivation time 
              and concentration of antibiotics were optimised. The results from 
              this study showed that pre-cultured cotyledons incubated for 48 
              h in co-cultivation medium increased the callus formation to 61% 
              while using 500 mg/L carbenicillin antibiotic in the shoot regeneration 
              medium reduced the contamination of A. tumefaciens to 5.2%. 
              Besides, A. tumefaciens strain C58 was shown to be the most 
              suitable A. tumefaciens strain to be used in this study. 
              Polymerase Chain Reaction (PCR) was performed on the regenerated 
              shoots to confirm integration of the PRT6 fragment 
              into the tomato genome. Based on the PCR analysis, all putative transgenic 
              shoots were positive transformants.   
             
           Keywords: 
              Antibiotic; A. 
              tumefaciens; callus; co-cultivation; Proteolysis 6  
               RUJUKAN
            
           Carvalho,
            R.F., Marcelo, L.C., Lilian, E.P., Simone, L.C., Agustin, Z., Joni, E.L.,
            Vagner, A.B., & Lázaro, E.P.P. 2011. Convergence of developmental mutants
            into a single tomato model system: Micro-Tom as an effective toolkit for plant
            development research. Plant Methods 7(1): 1-14.
  
           Chetty, V.J., 
              Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, 
              W. & Orozco-Cárdenas, M.L. 2013. Evaluation of four A. 
              tumefaciens strains for the genetic transformation of tomato 
              (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell 
              Reports 32(2): 239-247.   Costa,
            M.G.C., Nogueira, F.T.S., Figueira, M.L., Otoni, W.C., Brommonschenkel, S.H.
  & Cecon, P.R. 2000. Influence of the antibiotic timentin on plant
            regeneration of tomato (Lycopersicon esculentum Mill.) Cultivars. Plant
              Cell Reports 19(3): 327-332.
  
           Gibbs,
            D.J., Mark, B., Hannah, M.T. & Michael, J.H. 2016. From start to finish:
            Amino-terminal protein modifications as degradation signals in plants. New
              Phytologist 211(4): 1188-1194.
  
           1188-1194.
            
           Gibbs, D.J., Jorge,
            V.C., Sophie, B., Geeta, P., Guillermina, M.M. & Michael, J.H. 2015. Group
            VII ethylene response factors coordinate oxygen and nitric oxide signal
            transduction and stress responses in plants. Plant Physiology 169(1):
            23-31.
  
           Gibbs, D.J., Md Isa, N.,
            Movahedi, M., Lozano-Juste, J., Mendiondo, G.M., Berckhan, S., Marín-de,
            L.R.N., Vicente, C.J., Sousa, C.C., Pearce, S.P., Bassel, G.W., Hamali, B.,
            Talloji, P., Tomé, D.F., Coego, A., Beynon, J., Alabadí, D., Bachmair, A.,
            León, J., Gray, J.E., Theodoulou, F.L. & Holdsworth, M.J. 2014. Nitric
            oxide sensing in plants is mediated by proteolytic control of group vii erf
            transcription factors. Molecular Cell 53(3): 369-379.
  
           Gibbs, D.J., Seung,
            C.L., Nurulhikma, M.I., Silvia, G., Takeshi, F., George, W.B., Cristina, S.C.,
            Corbineau, F., Theodoulou, F.L., Bailey-Serres, J. & Holdsworth, M.J. 2011.
            Homeostatic response to hypoxia is regulated by the n-end rule pathway in
            plants. Nature 479(7373): 415-418.
  
           Godwin, I., Gordon, T.,
            Brian, F. & Newbury, H.J. 1991. The effects of acetosyringone and pH on
            agrobacterium-mediated transformation vary according to plant species. Plant
              Cell Reports 9(12): 671-675.
  
           Graciet, E. & Frank,
            W. 2010. The plant n-end rule pathway: Structure and functions. Trends in
              Plant Science 15(8): 447-453.
  
           Grewal, D., Raman, G.
  & Satbir, S.G. 2006. Influence of antibiotic cefotaxime on somatic
            embryogenesis and plant regeneration in Indica rice. Biotechnology Journal 1(10):
            1158-1162.
  
           Haddadi, F., Maheran,
            A.A., Siti, N.A.A., Soon, G.T. & Hossein, K. 2015. An efficient
            agrobacterium-mediated transformation of strawberry cv. camarosa by a dual
            plasmid system. Molecules 20(3): 3647-3666.
  
           Holford, P. & Newbury, 
              H.J. 1992. The effects of antibiotics and their breakdown products 
              on the in vitro growth of Antirrhinum majus. Plant 
              Cell Reports 11(2): 93-96.   Martí, E., Carmina, G.,
            Gerard, J.B., Mark, S.D. & José, L.G. 2006. Genetic and physiological
            characterization of tomato cv. Micro-Tom. Journal of Experimental Botany 57(9):
            2037-47.
  
           Mendiondo, G.M., Gibbs,
            D.J., Szurman-Zubrzycka, M., Korn, A., Marquez, J., Szarejko, I., Maluszynski,
            M., King, J., Axcell, B., Smart, K., Corbineau, F. & Holdsworth, M.J. 2016.
            Enhanced waterlogging tolerance in barley by manipulation of expression of the
            n-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnology Journal 14(1):
            40-50.
  
           Nakano, T.,
            Suzuki, K., Fujimura, T. & Shinshi, H. 2006. Genome-wide analysis of the
            ERF gene family. Plant Physiology 140(February): 411-432.
  
           Qin, Y.H., Jaime, A., Teixeirada,
            S.J.H.B, Zhang, S.L. & Hu, G.B. 2011. Response of in vitro strawberry
            to antibiotics. Plant Growth Regulation 65(1): 183-193.
  
           Rao, A.M., Padma, S.K. & Kavi, K.P.B.
            1995. Enhanced plant regeneration in grain and sweet sorghum by asparagine,
            proline and cefotaxime. Plant Cell Reports 15(1-2): 72-75.
  
           Saito, T., Ariizumi, T., Okabe, Y.,
            Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., Mizoguchi, T., Yamazaki, Y., Aoki,
            K. & Ezura, H. 2011. TOMATOMA: A Novel tomato mutant database distributing
            Micro-Tom mutant collections. Plant and Cell Physiology 52(2): 283-296.
  
           Sun, H.J., Sayaka, U., Shin, W. &
            Hiroshi, E. 2006. A highly efficient transformation protocol for Micro-Tom, a
            model cultivar for tomato functional genomics. Plant and Cell Physiology 47(3):
            426-431.
  
           Tan, L.W., Zuraida, A.R., Hoe, H.G., Duk,
            J.H., Ismanizan, I. & Zamri, Z. 2017. Production of transgenic rice (Indica
            Cv. MR219) overexpressing ABP57 gene through agrobacterium-mediated
            transformation. Sains Malaysiana 46(5): 703-711.
  
           Varland, S., Camilla, O. & Thomas, A. 
              2015. N-terminal modifications of cellular proteins: The enzymes 
              involved, their substrate specificities and biological effects. 
              Proteomics 15(14): 2385-2401. Varshavsky, A. 2011. The N-- End rule pathway 
              and regulation by proteolysis. Protein Science 20(8): 1298-1345. Wood, D.W., Setubal, J.C., Kaul, R., Monks, 
              D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., 
              Almeida, N.F. Jr., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., 
              Karp, P.D., Bovee, D. Sr., Chapman. P., Clendenning, J., Deatherage, 
              G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.J., McClelland, 
              E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, 
              Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, 
              P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., 
              Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, 
              S.V., Tomb, J.F., Gordon, M.P., Olson, M.V. & Nester, E.W. 2001. 
              The genome of the natural genetic engineer A. tumefaciens C58. 
              Science 294(5550): 2317-2323.   
             
           
             
           *Pengarang untuk
            surat-menyurat; email: hikma@ukm.edu.my  
  
        
             |