Sains Malaysiana 47(8)(2018): 1701–1708
http://dx.doi.org/10.17576/jsm-2018-4708-09
Pembinaan Penanda Molekul bagi Kultur
Tisu Kelapa Sawit Prolifik
(Construction of Molecule Markers for Prolific
Oil Palm Tissue Culture)
SITI KHADIJAH A. KARIM1* & NIK MARZUKI SIDIK2
1Fakulti Sains Gunaan, Universiti
Teknologi MARA (UiTM) Jengka, 26400 Bandar Tun Razak, Jengka, Pahang Darul
Makmur, Malaysia
2Fakulti Industri Asas Tani, Universiti
Malaysia Kelantan Kampus Jeli, 17600 Jeli, Kelantan
Darul Naim, Malaysia
Diserahkan: 16
Oktober 2017/Diterima: 26 April 2018
ABSTRAK
Penggunaan penanda DNA boleh
mengurangkan masalah dalam kultur tisu khususnya
apabila diaplikasikan semasa pemilihan pokok untuk kultur tisu. Oleh itu,
penyelidikan ini dijalankan bertujuan untuk membina penanda molekul bagi kultur tisu kelapa sawit prolifik dengan menggunakan teknik
polimorfisme panjang cebisan teramplifikasi (AFLP). Analisis AFLP dijalankan ke atas 20 klon kelapa
sawit yang terbahagi kepada tiga kelas iaitu klon tidak prolifik (10 jenis
klon), klon normal (6 jenis klon) dan klon prolifik (4 jenis klon). Kesemua klon yang digunakan adalah daripada titisan sel yang
berbeza. Sebanyak 25 kombinasi pencetus telah
digunakan dalam analisis AFLP dan 13 daripada mereka memberikan
corak amplifikasi polimorfisme. Daripada hasil ini, sebanyak 44 cebisan
polimorfik telah dipencilkan dengan 33 cebisan adalah bagi klon tidak prolifik,
1 cebisan bagi normal dan 10 cebisan bagi klon prolifik. Cebisan
ini telah diklon ke dalam plasmid, berjujukan dan seterusnya, analisis jujukan
dijalankan. Sebanyak 36 cebisan polimorfik telah
digunakan bagi kajian seterusnya. Berdasarkan kepada
jujukan yang diperoleh, sepasang pencetus yang khusus kepada setiap cebisan
telah dijana. Jangkaan julat saiz jalur DNA yang
diamplifikasi bagi setiap pencetus adalah antara 70 hingga 500 bp. Pasangan
pencetus yang optimum diuji ke atas 20 jenis klon kelapa sawit untuk
mengesahkan penanda yang telah dibina. Daripada 36 pasangan pencetus yang
dibina, 2 pasang pencetus telah menunjukkan potensi
untuk digunakan sebagai penanda kepada kultur tisu kelapa sawit prolifik.
Kata kunci: AFLP;
kelapa sawit; kultur tisu; penanda DNA
ABSTRACT
The use of DNA marker
could minimize problems in tissue culture especially when applied during the
selection of plants for tissue culture. Therefore, the aimed of this research
was to develop molecular markers for prolific oil palm tissue culture using
amplified fragment length polymorphism (AFLP) technique. AFLP analysis was carried out upon 20 oil palm clones that have
divided into three classes which are non-prolific clone (10 types of clone),
normal clone (6 types of clone) and prolific clone (4 types of clone). All of
the clones used were from different cell line. There were 25 primer
combinations used in the AFLP analysis and 13 out of them have
produced significant polymorphic amplification patterns. From these results, 44
polymorphic DNA fragments were isolated where 33 fragments for
non-prolific clone, one fragment for normal clone and 10 fragments for prolific
clone. These fragments were cloned into plasmid, sequenced and then sequence
analysis was done. There were 36 polymorphic fragments have undergone the
subsequent experiments. A pair of specific primers for each fragment was
designed based on their sequences. The expected size of amplified DNA bands
for each primer pair was between 70 bp to 500 bp. The optimized primer pairs
were tested to the 20 types of oil palm clones in order to confirm the markers
developed. From the 36 designated primers combinations, 2 pairs of the primers
showed the potential to be used as marker for prolific oil palm tissue culture.
Keywords: AFLP; DNA marker; palm oil; tissue culture
RUJUKAN
Breure, K. 2003. The
search for yield in oil palm: Basic principles in ‘The oil palm management for
large and sustainable yields’. Potash Institute of Canada
and International Potash Institute. pp. 59-98.
Corley, R.H.V. &
Tinker, P.B. 2003. The Oil Palm. Oxford:
Blackwell Science.
Costa,
R., Pereira, G., Garrido, I., Tavares-de-Sousa, M.M. & Espinosa, F. 2016. Comparison
of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis
glomerata L.) germplasm variations. PloS One 11(4): e0152972.
Hoffmann,
M.P., Donough, C.R., Cook, S.E., Myles, J.F., Lim, C.H., Lim, Y.L. & Cock,
J. 2017. Yield gap analysis in oil palm: Framework development and application in commercial
operations in Southeast Asia. Agricultural Systems 151: 12-19.
Hossain, A.B.M.S.,
Imdadul, H., Mohammed, S.A., Nasir, A.I. & Kamaludin, R. 2017. Callus cell
proliferation and explants regeneration using broccoli shoot tip in vitro culture. Biochemical and antioxidant properties. British
Journal of Applied Science & Technology 13: 1-8.
Ikeuchi, M., Yoichi, O.,
Akira, I. & Keiko, S. 2016. Plant regeneration: Cellular origins and
molecular mechanisms. Development 143(9): 1442-1451.
Jouannic,
S., Argout, X., Lechauve, F., Fizames, C., Borgel, A., Morcillo, F.,
Aberlenc-Bertossi, F., Duval, Y. & Tregear, J. 2005. Analysis of expressed
sequence tags from oil palm (Elaies guineensis). FEBS Letters 579:
2709-2714.
Karam M.S. Ali, Ali M.
Sabbour, Mohamed K. Khalil, Abdel- Halim S. Aly & Amal F.M. Zein El Din.
2017. In vitro morphogenesis of direct organs in date palm (Phoenix
dactylifera L.) Siwy cv. International Journal of Advances in
Agricultural Science and Technology 4(2): 01-12.
Low, E.T.L., Tan, J.S.,
Chan, P.L., Boon, S.H., Wong, Y.L., Rozana, R., Ooi, L.C.L., Ma,
L.S., Ong-Abdullah, M., Cheah, S.C. & Rajinder, S.I.N.G.H. 2006.
Developments toward the application of DNA chip technology in oil
palm tissue culture. Journal of Oil Palm Research 18(Special
Issue): 87-98.
Makowska,
K., Marta, K., Sylwia, O., Janusz, Z., Andrzej, C. & Robert, K. 2017. Arabinogalactan
proteins improve plant regeneration in barley (Hordeum vulgare L.)
anther culture. Plant Cell, Tissue and Organ Culture (PCTOC) 131(2):
247-257.
Meudt, H.M. & Clarke, A.C. 2007. Almost forgotten or latest practice? AFLP
applications, analyses and advances. Trends in Plant Sciences 12(3):
106-117.
Murphy, D.J. 2017. Recent scientific
developments in genetic technologies: Implications for future regulation of
GMOs in developing countries. Genetically Modified
Organisms in Developing Countries. p. 13.
Orton, T.J. 1980. Chromosome
viability in tissue cultures and regenerated plants of Horedum. Theor.
Appl. Genet 56: 101-112.
Rajanaidu, N. & Jalani, B.S. 1995. World-wide performance of DXP planting materials and future
prospects. In Proc. 1995 PORIM National Oil Palm Conf.-Tech. pp. 1-29.
Reinert, J. & Backs, D. 1968. Control
of totipotency in plant cells growing in vitro. Nature 220:
1340-1341.
Rice, T.B., Reid, R.K.
& Gordon, P.N. 1979. Morphogenesis in Field Crops. New York: Hughes
Publications.
Roberts, J., Siew, E.O., Ahmad, T.H.,
Zamzuri, I., Samsul, K.R., Wei, C.W., Chin, N.C., Sau, Y.K., Nuraziyan, A.
& Norashikin, S. 2017. Clonal propagation. Dlm. Oil Palm Breeding:
Genetics and Genomics. Florida: CRC Press.
Sharp, W.R., Sondhal,
M.R., Caldas, L.S. & Maraffa, S.B. 1980. The physiology of in
vitro asexual embryogenesis. Horticult. Rev. 2: 47-54.
Tan, Y.C., Ho, W.Y.,
Alitheen, N.B., Wong, M.Y. & Ho, C.L. 2016. Cloning and expression of oil palm (Elaeis
guineensis Jacq.) Type 2 ribosome inactivating protein in Escherichia coli. International Journal of Peptide Research
and Therapeutics 22(1): 37-44.
Woittiez, L.S., Mark, T.W., Maja, S.,
Meine, N. & Ken, E.G. 2017. Yield gaps in oil palm: A quantitative review
of contributing factors. European Journal of Agronomy 83: 57-77.
*Pengarang untuk surat-menyurat;
email: khadijahkarim@pahang.uitm.edu.my
|