Sains Malaysiana 47(9)(2018): 2017–2026
http://dx.doi.org/10.17576/jsm-2018-4709-09
Chemical
Changes and Optimisation of Acetous Fermentation
Time and Mother of Vinegar Concentration in the Production of Vinegar-like
Fermented Papaya Beverage
(Perubahan Kimia dan Pengoptimuman Masa dan Kepekatan Ibu Cuka untuk Fermentasi
Asetus
dalam Penghasilan Minuman Buah Betik Terfermentasi Serupa-Cuka)
CHING TING
KONG1,
CHIN
WAI
HO1,
JIN
WEI ALVIN
LING1,
AZWAN
LAZIM2, SHAZRUL
FAZRY3 & SENG
JOE
LIM1*
1Centre for Biotechnology and Functional
Food, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre for Advanced Materials and
Renewable Resources, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Tasik Chini
Research Centre, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 5 Februari
2018/Diterima: 31 Mei 2018
ABSTRACT
Fermentation has been long
used as a method to produce beverage of various health benefits.
In this research, ripe papaya (Carica papaya)
was fermented through alcoholic fermentation using Saccharomyces
cerevisiae, followed by acetous fermentation using Acetobacter
spp. from mother of vinegar, to reduce wastage of this highly
perishable Malaysian fruit. The papaya juice was pasteurised
prior to the fermentation process. Optimisation
of acetous fermentation was carried out using the response surface
methodology (RSM)
with central composite rotatable design (CCRD). Acetous fermentation time
had shown significant effect on all the chemical characteristics
while mother of vinegar concentration did not significantly effect
on all the chemical characteristics. The vinegar-like fermented
papaya beverage which was produced at the optimum point (Fermentation
time = 70.80 h and concentration = 40% mother of vinegar) contained
0.37 ± 0.01% reducing sugar, 3.54 ± 0.36% ethanol, 2.46 ±
0.07% acetic acid, 327.89 ± 3.60 mg GAE/
L total phenolic, 2.32 ± 0.17 mg/100 mL ascorbic acid and 52.40
± 0.23% mg AA/100
mL free-radical scavenging activity. In conclusion, vinegar-like
fermented papaya beverage was successfully produced and its chemical
compositions changed from papaya juice to wine and vinegar-like
beverage with increased bioactive compounds and antioxidative
activity.
Keywords: Acetous; alcohol;
fermentation; optimisation; papaya
ABSTRAK
Fermentasi merupakan kaedah yang telah lama digunakan untuk menghasilkan minuman dengan pelbagai faedah kesihatan. Dalam kajian ini, buah
betik (Carica papaya)
yang ranum telah
difermentasi melalui
fermentasi alkohol oleh Saccharomyces cerevisiae dan
fermentasi asetus
oleh Acetobacter spp. daripada ibu cuka
bagi mengurangkan
pembaziran buah Malaysia yang mudah rosak ini.
Jus betik telah
dipasteurkan sebelum diperlakukan dengan proses fermentasi. Pengoptimuman fermentasi asetus telah dijalankan melalui kaedah respons permukaan (RSM)
dengan reka
bentuk berputar komposit berpusat (CCRD).
Masa fermentasi asetus
mempunyai kesan yang bererti kepada semua ciri kimia
manakala kepekatan
ibu cuka tidak
memberi kesan
yang signifikan ke atas
semua ciri kimia tersebut. Minuman terfermentasi buah betik serupa-cuka
yang dihasilkan pada
titik optimum fermentasi asetus (Masa fermentasi = 70.80
jam dan kepekatan
= 40% ibu cuka) mengandungi
0.37 ± 0.01% gula, 3.54 ± 0.36% etanol,
2.46 ± 0.07% asid asetik,
327.89 ± 3.60 mg GAE/ L jumlah
fenolik, 2.32 ± 0.17 mg/100 mL asid
askorbik dan
52.40 ± 0.23% mg AA/100 mL aktiviti pemerangkapan radikal bebas DPPH. Secara
kesimpulannya, minuman
terfermentasi buah betik serupa-cuka telah berjaya dihasilkan
dan perubahan
komposisi kimia daripada jus kepada wain dan minuman betik
serupa-cuka menunjukkan
peningkatan sebatian bioaktif dan aktiviti
antioksida.
Kata kunci: Alkohol;
asetus; buah
betik; cuka; fermentasi;
pengoptimuman
RUJUKAN
Akubor, P.I. 2017. Characterization
of fruit wines from baobab (Adansonia
digitata), pineapple (Ananas
sativus) and carrot (Daucus
carota) tropical fruits. Asian
Journal of Biotechnology and Bioresource
Technology 1(3): 1-10.
Bal, L., Ahmad,
T., Senapati, A. & Pandit,
P. 2014. Evaluation of quality attributes during storage of guava
nectar cv. Lalit from different pulp and TSS ratio. Journal of Food
Processing and Technology 5: 329.
Basulto, F.S., Duch, E.S., Y-Gil, F.E., Diaz Plaza, R., Saavedra, A.L. &
Santamaria, J.M. 2009. Postharvest ripening and maturity indices
for Maradol papaya. Interciencia
34(8): 583-588.
Budak, N.H., Aykin, E., Seydim, A.C., Greene,
A.K. & Guzel- Seydim,
Z.B. 2014. Functional properties of vinegar. Journal of Food
Science 79(5): R757-R764.
Cardwell, T.J.,
Cattrall, R.W., Cross, G.J., O’connell,
G.R., Petty, J.D. & Scollary, G.R.
1991. Determination of titratable acidity of wines and total acidity
of vinegars by discontinuous flow analysis using photometric end-point
detection. Analyst 116(10): 1051-1054.
Caro, I., Pérez,
L., Cantero, D. & Webb, C. 1992. Modelling
of ethanol evaporative losses during batch alcohol fermentation.
The Chemical Engineering Journal 48(3): B15-B22.
Cheeke, P.R. & Dierenfeld, E.S. 2010. Comparative Animal Nutrition and
Metabolism. Oxfordshire: CABI.
Chidi, B., Rossouw, D., Buica, A. & Bauer,
F. 2015. Determining the impact of industrial wine yeast strains
on organic acid production under white and red wine-like fermentation
conditions. South African Journal of Enology and Viticulture
36(3): 316-327.
Chism, G.W. & Haard, N.F. 1996. Characteristics of edible plant tissues.
In Food Chemistry, edited by Fennema,
O.R. New York: Marcel Dekker Inc. pp. 943-1011.
Coelho, E., Genisheva, Z., Oliveira, J.M., Teixeira, J.A. & Domingues, L. 2017. Vinegar production from fruit concentrates:
Effect on volatile composition and antioxidant activity. Journal
of Food Science and Technology 54(12): 4112-4122.
Delfini, C. & Formica,
J.V. 2001. Wine Microbiology: Science and Technology. Philadelphia:
Taylor & Francis.
Dubourdieu, D., Masneuf, I. & Bely, M. 2005. Influence of physiological
state of inoculum on volatile acidity production by Saccharomyces
cerevisiae during high sugar fermentation. International
Journal of Vine and Wine Sciences 39(4): 191-198.
Emde, F. 2014. Ullmann’s
Encyclopedia of Industrial Chemistry: Vinegar. Weinheim:
Wiley VCH Verlag GmbH & Co.
Erasmus, D.J.,
Cliff, M. & Van Vuuren, H.J. 2004.
Impact of yeast strain on the production of acetic acid, glycerol,
and the sensory attributes of icewine.
American Journal of Enology and Viticulture 55(4): 371-378.
Fatima, B. &
Mishra, A. 2015. Optimization of process parameter for the production
of vinegar from banana peel and coconut water. International
Journal of Science, Engineering and Technology 3(3): 817-823.
Ferreira, J., Toit, M. & Toit, W.D. 2006.
The effects of copper and high sugar concentrations on growth, fermentation
efficiency and volatile acidity production of different commercial
wine yeast strains. Australian Journal of Grape and Wine Research
12(1): 50-56.
Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J.
2017a. Varieties, production, composition and health benefits of
vinegars: A review. Food Chemistry 221: 1621-1630.
Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J.
2017b. Effects of fermentation time and pH on soursop (Annona
muricata) vinegar production towards its chemical compositions.
Sains Malaysiana
46(9): 1505-1512.
Ho, Y.M., Wan Amir
Nizam, W.A. & Wan Rosli,
W.I. 2016. Antioxidative activities and
polyphenolic content of different varieties of malaysian
young corn ear and cornsilk. Sains
Malaysiana 45(2): 195-200.
Huh, W.K., Lee,
B.H., Kim, S.T., Kim, Y.R., Rhie, G.E.,
Baek, Y.W., Hwang, C.S., Lee, J.S. & Kang, S.O. 1998.
D-Erythroascorbic acid is an important
antioxidant molecule in Saccharomyces cerevisiae. Molecular
Microbiology 30(4): 895-903.
Kongkiattikajor, J. 2015. Enhancement
of bioactive compounds of roselle vinegar
by co-culture fermentation. Isan Journal of Pharmaceutical Sciences
10(4): 61-74.
Kumar, G.V., Ajay
Kumar, K., Raghu, P.G. & Manjappa,
S. 2013. Determination of vitamin C in some fruits and vegetables
in Davanagere city, (Karanataka)-India.
International Journal of Pharmacy & Life Sciences 4(3):
2489-2491.
Lee, P.R., Ong,
Y.L., Yu, B., Curran, P. & Liu, S.Q. 2010. Profile of volatile
compounds during papaya juice fermentation by a mixed culture of
Saccharomyces cerevisiae and Williopsis
saturnus. Food Microbiology 27(7): 853-861.
Lešková, E., Kubíková, J., Kováčiková, E.,
Košická, M., Porubská,
J. & Holčíková, K. 2006. Vitamin
losses: Retention during heat treatment and continual changes expressed
by mathematical models. Journal of Food Composition and Analysis
19(4): 252-276.
Lim, S.J., Wan
Aida, W.M., Maskat, M.Y., Mamot,
S., Ropien, J. & Mohd, D.M. 2014.
Isolation and antioxidant capacity of fucoidan
from selected Malaysian seaweeds. Food Hydrocolloids 42:
280-288.
Lingham, T., Besong, S., Ozbay, G. & Lee,
J. 2012. Antimicrobial activity of vinegar on bacterial species
isolated from retail and local channel catfish (Ictalurus
punctatus). Journal of Food Processing and Technology S11-001
2: 25-28.
Malaysia Food Regulations.
1985. Regulation 334. Putrajaya: Ministry of Health, Malaysia.
Mohamad, N.E.,
Yeap, S.K., Lim, K.L., Mohd Yusof,
H., Beh, B.K., Tan, S.W., Ho, W.Y., Sharifuddin, S.A., Jamaluddin, A., Long, K., Nik Abd Rahman, N.M.A. & Alitheen,
N.B. 2015. Antioxidant effects of pineapple vinegar in reversing
of paracetamol-induced liver damage in mice. Chinese Medicine
10: 3.
Mohd Fadzelly, A.B., Fifilyana, A.K.
& Perisamy, E. 2015. Comparison of
phytochemicals and antioxidant properties of different fruit parts
of selected artocarpus species from Sabah, Malaysia. Sains Malaysiana 44(3):
355-363.
Morales, L.M.,
González, G.A., Casas, J.A. & Troncoso,
A.M. 2001. Multivariate analysis of commercial and laboratory produced
sherry wine vinegars: Influence of acetification
and aging. European Food Research and Technology 212(6):
676-682.
Nogueira, A., Guyot, S., Marnet, N., Lequéré, J.M., Drilleau, J.F. &
Wosiacki, G. 2008. Effect of alcoholic
fermentation in the content of phenolic compounds in cider processing.
Brazilian Archives of Biology and Technology 51(5): 1025-1032.
Pérez-Gregorio,
M.R., Regueiro, J., Alonso-González, E.,
Pastrana-Castro, L.M. & Simal-Gándara,
J. 2011. Influence of alcoholic fermentation process on antioxidant
activity and phenolic levels from mulberries (Morus
nigra L.). LWT - Food Science and Technology 44(8):
1793-1801.
Randhir, R., Kwon, Y.I. & Shetty, K.
2008. Effect of thermal processing on phenolics,
antioxidant activity and health-relevant functionality of select
grain sprouts and seedlings. Innovative Food Science & Emerging
Technologies 9(3): 355-364.
Sanarico, D., Motta, S., Bertolini, L. & Antonelli, A.
2003. HPLC determination of organic acids in traditional balsamic
vinegar of Reggio emilia. Journal
of Liquid Chromatography & Related Technologies 26(13):
2177-2187.
Su, M.S. & Chien, P.J. 2007. Antioxidant activity, anthocyanins, and
phenolics of rabbiteye blueberry
(Vaccinium ashei)
fluid products as affected by fermentation. Food Chemistry
104(1): 182-187.
Usman, M., Davidson, J. & Books,
M.C. 2015. Health Benefits of Papaya - for Cooking and Healing.
Mendon: Mendon Cottage Books.
Van Den Broeck,
I., Ludikhuyze, L., Weemaes,
C., Van Loey, A. & Hendrickx,
M. 1998. Kinetics for isobaric-isothermal degradation of l-ascorbic
acid. Journal of Agricultural and Food Chemistry 46(5): 2001-2006.
Vithlani, V.A. & Patel, H.V. 2010. Production
of functional vinegar from Indian jujube (Zizyphus
mauritiana) and its antioxidant properties.
Journal of Food Technology 8(3): 143-149.
Wood, T.M. & Bhat, K.M. 1988.
Methods for measuring cellulase activities.
Methods in Enzymology 160: 87-112.
Zuhair, R.A., Aminah,
A., Sahilah, A.M. & Eqbal,
D. 2013. Antioxidant activity and physicochemical properties changes
of papaya (Carica papaya L.
cv. Hongkong) during different ripening stage. International
Food Research Journal 20(4): 1653-1659.
*Pengarang
untuk surat-menyurat;
email: joe@ukm.edu.my
|