| Sains Malaysiana 47(9)(2018): 2017–2026 
               http://dx.doi.org/10.17576/jsm-2018-4709-09 
                 Chemical 
              Changes and Optimisation of Acetous Fermentation 
              Time and Mother of Vinegar Concentration in the Production of Vinegar-like 
              Fermented Papaya Beverage (Perubahan Kimia dan Pengoptimuman Masa dan Kepekatan Ibu Cuka untuk Fermentasi  Asetus 
              dalam Penghasilan Minuman Buah Betik Terfermentasi Serupa-Cuka)   CHING TING 
              KONG1, 
              CHIN 
              WAI 
              HO1, 
              JIN 
              WEI ALVIN 
              LING1, 
              AZWAN 
              LAZIM2, SHAZRUL 
              FAZRY3 & SENG 
              JOE 
              LIM1*   1Centre for Biotechnology and Functional 
              Food, Faculty of Science and Technology, Universiti 
              Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia   2Centre for Advanced Materials and 
              Renewable Resources, Faculty of Science and Technology, Universiti 
              Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia   3Tasik Chini 
              Research Centre, Faculty of Science and Technology, Universiti 
              Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia   Diserahkan: 5 Februari 
              2018/Diterima: 31 Mei 2018   ABSTRACT Fermentation has been long 
              used as a method to produce beverage of various health benefits. 
              In this research, ripe papaya (Carica papaya) 
              was fermented through alcoholic fermentation using Saccharomyces 
              cerevisiae, followed by acetous fermentation using Acetobacter 
              spp. from mother of vinegar, to reduce wastage of this highly 
              perishable Malaysian fruit. The papaya juice was pasteurised 
              prior to the fermentation process. Optimisation 
              of acetous fermentation was carried out using the response surface 
              methodology (RSM) 
              with central composite rotatable design (CCRD). Acetous fermentation time 
              had shown significant effect on all the chemical characteristics 
              while mother of vinegar concentration did not significantly effect 
              on all the chemical characteristics. The vinegar-like fermented 
              papaya beverage which was produced at the optimum point (Fermentation 
              time = 70.80 h and concentration = 40% mother of vinegar) contained 
              0.37 ± 0.01% reducing sugar, 3.54 ± 0.36% ethanol, 2.46 ± 
              0.07% acetic acid, 327.89 ± 3.60 mg GAE/ 
              L total phenolic, 2.32 ± 0.17 mg/100 mL ascorbic acid and 52.40 
              ± 0.23% mg AA/100 
              mL free-radical scavenging activity. In conclusion, vinegar-like 
              fermented papaya beverage was successfully produced and its chemical 
              compositions changed from papaya juice to wine and vinegar-like 
              beverage with increased bioactive compounds and antioxidative 
              activity.    Keywords: Acetous; alcohol; 
              fermentation; optimisation; papaya   ABSTRAK Fermentasi merupakan kaedah yang telah lama digunakan untuk menghasilkan minuman dengan pelbagai faedah kesihatan. Dalam kajian ini, buah 
              betik (Carica papaya) 
              yang ranum telah 
              difermentasi melalui 
              fermentasi alkohol oleh Saccharomyces cerevisiae dan 
              fermentasi asetus 
              oleh Acetobacter spp. daripada ibu cuka 
              bagi mengurangkan 
              pembaziran buah Malaysia yang mudah rosak ini. 
              Jus betik telah 
              dipasteurkan sebelum diperlakukan dengan proses fermentasi. Pengoptimuman fermentasi asetus telah dijalankan melalui kaedah respons permukaan (RSM) 
              dengan reka 
              bentuk berputar komposit berpusat (CCRD). 
              Masa fermentasi asetus 
              mempunyai kesan yang bererti kepada semua ciri kimia 
              manakala kepekatan 
              ibu cuka tidak 
              memberi kesan 
              yang signifikan ke atas 
              semua ciri kimia tersebut. Minuman terfermentasi buah betik serupa-cuka 
              yang dihasilkan pada 
              titik optimum fermentasi asetus (Masa fermentasi = 70.80 
              jam dan kepekatan 
              = 40% ibu cuka) mengandungi 
              0.37 ± 0.01% gula, 3.54 ± 0.36% etanol, 
              2.46 ± 0.07% asid asetik, 
              327.89 ± 3.60 mg GAE/ L jumlah 
              fenolik, 2.32 ± 0.17 mg/100 mL asid 
              askorbik dan 
              52.40 ± 0.23% mg AA/100 mL aktiviti pemerangkapan radikal bebas DPPH. Secara 
              kesimpulannya, minuman 
              terfermentasi buah betik serupa-cuka telah berjaya dihasilkan 
              dan perubahan 
              komposisi kimia daripada jus kepada wain dan minuman betik 
              serupa-cuka menunjukkan 
              peningkatan sebatian bioaktif dan aktiviti 
              antioksida.   Kata kunci: Alkohol; 
              asetus; buah 
              betik; cuka; fermentasi; 
              pengoptimuman RUJUKAN    Akubor, P.I. 2017. Characterization 
              of fruit wines from baobab (Adansonia 
              digitata), pineapple (Ananas 
              sativus) and carrot (Daucus 
              carota) tropical fruits. Asian 
              Journal of Biotechnology and Bioresource 
              Technology 1(3): 1-10.  Bal, L., Ahmad, 
              T., Senapati, A. & Pandit, 
              P. 2014. Evaluation of quality attributes during storage of guava 
              nectar cv. Lalit from different pulp and TSS ratio. Journal of Food 
              Processing and Technology 5: 329.  Basulto, F.S., Duch, E.S., Y-Gil, F.E., Diaz Plaza, R., Saavedra, A.L. & 
              Santamaria, J.M. 2009. Postharvest ripening and maturity indices 
              for Maradol papaya. Interciencia 
              34(8): 583-588.  Budak, N.H., Aykin, E., Seydim, A.C., Greene, 
              A.K. & Guzel- Seydim, 
              Z.B. 2014. Functional properties of vinegar. Journal of Food 
              Science 79(5): R757-R764.  Cardwell, T.J., 
              Cattrall, R.W., Cross, G.J., O’connell, 
              G.R., Petty, J.D. & Scollary, G.R. 
              1991. Determination of titratable acidity of wines and total acidity 
              of vinegars by discontinuous flow analysis using photometric end-point 
              detection. Analyst 116(10): 1051-1054.  Caro, I., Pérez, 
              L., Cantero, D. & Webb, C. 1992. Modelling 
              of ethanol evaporative losses during batch alcohol fermentation. 
              The Chemical Engineering Journal 48(3): B15-B22.  Cheeke, P.R. & Dierenfeld, E.S. 2010. Comparative Animal Nutrition and 
              Metabolism. Oxfordshire: CABI.  Chidi, B., Rossouw, D., Buica, A. & Bauer, 
              F. 2015. Determining the impact of industrial wine yeast strains 
              on organic acid production under white and red wine-like fermentation 
              conditions. South African Journal of Enology and Viticulture 
              36(3): 316-327.  Chism, G.W. & Haard, N.F. 1996. Characteristics of edible plant tissues. 
              In Food Chemistry, edited by Fennema, 
              O.R. New York: Marcel Dekker Inc. pp. 943-1011.  Coelho, E., Genisheva, Z., Oliveira, J.M., Teixeira, J.A. & Domingues, L. 2017. Vinegar production from fruit concentrates: 
              Effect on volatile composition and antioxidant activity. Journal 
              of Food Science and Technology 54(12): 4112-4122.  Delfini, C. & Formica, 
              J.V. 2001. Wine Microbiology: Science and Technology. Philadelphia: 
              Taylor & Francis.  Dubourdieu, D., Masneuf, I. & Bely, M. 2005. Influence of physiological 
              state of inoculum on volatile acidity production by Saccharomyces 
              cerevisiae during high sugar fermentation. International 
              Journal of Vine and Wine Sciences 39(4): 191-198.  Emde, F. 2014. Ullmann’s 
              Encyclopedia of Industrial Chemistry: Vinegar. Weinheim: 
              Wiley VCH Verlag GmbH & Co.  Erasmus, D.J., 
              Cliff, M. & Van Vuuren, H.J. 2004. 
              Impact of yeast strain on the production of acetic acid, glycerol, 
              and the sensory attributes of icewine. 
              American Journal of Enology and Viticulture 55(4): 371-378. 
               Fatima, B. & 
              Mishra, A. 2015. Optimization of process parameter for the production 
              of vinegar from banana peel and coconut water. International 
              Journal of Science, Engineering and Technology 3(3): 817-823. 
               Ferreira, J., Toit, M. & Toit, W.D. 2006. 
              The effects of copper and high sugar concentrations on growth, fermentation 
              efficiency and volatile acidity production of different commercial 
              wine yeast strains. Australian Journal of Grape and Wine Research 
              12(1): 50-56.  Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J. 
              2017a. Varieties, production, composition and health benefits of 
              vinegars: A review. Food Chemistry 221: 1621-1630.  Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J. 
              2017b. Effects of fermentation time and pH on soursop (Annona 
              muricata) vinegar production towards its chemical compositions. 
              Sains Malaysiana 
              46(9): 1505-1512.  Ho, Y.M., Wan Amir 
              Nizam, W.A. & Wan Rosli, 
              W.I. 2016. Antioxidative activities and 
              polyphenolic content of different varieties of malaysian 
              young corn ear and cornsilk. Sains 
              Malaysiana 45(2): 195-200.  Huh, W.K., Lee, 
              B.H., Kim, S.T., Kim, Y.R., Rhie, G.E., 
              Baek, Y.W., Hwang, C.S., Lee, J.S. & Kang, S.O. 1998. 
              D-Erythroascorbic acid is an important 
              antioxidant molecule in Saccharomyces cerevisiae. Molecular 
              Microbiology 30(4): 895-903.  Kongkiattikajor, J. 2015. Enhancement 
              of bioactive compounds of roselle vinegar 
              by co-culture fermentation. Isan Journal of Pharmaceutical Sciences 
              10(4): 61-74.  Kumar, G.V., Ajay 
              Kumar, K., Raghu, P.G. & Manjappa, 
              S. 2013. Determination of vitamin C in some fruits and vegetables 
              in Davanagere city, (Karanataka)-India. 
              International Journal of Pharmacy & Life Sciences 4(3): 
              2489-2491.  Lee, P.R., Ong, 
              Y.L., Yu, B., Curran, P. & Liu, S.Q. 2010. Profile of volatile 
              compounds during papaya juice fermentation by a mixed culture of 
              Saccharomyces cerevisiae and Williopsis 
              saturnus. Food Microbiology 27(7): 853-861.  Lešková, E., Kubíková, J., Kováčiková, E., 
              Košická, M., Porubská, 
              J. & Holčíková, K. 2006. Vitamin 
              losses: Retention during heat treatment and continual changes expressed 
              by mathematical models. Journal of Food Composition and Analysis 
              19(4): 252-276.  Lim, S.J., Wan 
              Aida, W.M., Maskat, M.Y., Mamot, 
              S., Ropien, J. & Mohd, D.M. 2014. 
              Isolation and antioxidant capacity of fucoidan 
              from selected Malaysian seaweeds. Food Hydrocolloids 42: 
              280-288.  Lingham, T., Besong, S., Ozbay, G. & Lee, 
              J. 2012. Antimicrobial activity of vinegar on bacterial species 
              isolated from retail and local channel catfish (Ictalurus 
              punctatus). Journal of Food Processing and Technology S11-001 
              2: 25-28.  Malaysia Food Regulations. 
              1985. Regulation 334. Putrajaya: Ministry of Health, Malaysia. 
               Mohamad, N.E., 
              Yeap, S.K., Lim, K.L., Mohd Yusof, 
              H., Beh, B.K., Tan, S.W., Ho, W.Y., Sharifuddin, S.A., Jamaluddin, A., Long, K., Nik Abd Rahman, N.M.A. & Alitheen, 
              N.B. 2015. Antioxidant effects of pineapple vinegar in reversing 
              of paracetamol-induced liver damage in mice. Chinese Medicine 
              10: 3.  Mohd Fadzelly, A.B., Fifilyana, A.K. 
              & Perisamy, E. 2015. Comparison of 
              phytochemicals and antioxidant properties of different fruit parts 
              of selected artocarpus species from Sabah, Malaysia. Sains Malaysiana 44(3): 
              355-363.  Morales, L.M., 
              González, G.A., Casas, J.A. & Troncoso, 
              A.M. 2001. Multivariate analysis of commercial and laboratory produced 
              sherry wine vinegars: Influence of acetification 
              and aging. European Food Research and Technology 212(6): 
              676-682.  Nogueira, A., Guyot, S., Marnet, N., Lequéré, J.M., Drilleau, J.F. & 
              Wosiacki, G. 2008. Effect of alcoholic 
              fermentation in the content of phenolic compounds in cider processing. 
              Brazilian Archives of Biology and Technology 51(5): 1025-1032. 
               Pérez-Gregorio, 
              M.R., Regueiro, J., Alonso-González, E., 
              Pastrana-Castro, L.M. & Simal-Gándara, 
              J. 2011. Influence of alcoholic fermentation process on antioxidant 
              activity and phenolic levels from mulberries (Morus 
              nigra L.). LWT - Food Science and Technology 44(8): 
              1793-1801. Randhir, R., Kwon, Y.I. & Shetty, K. 
              2008. Effect of thermal processing on phenolics, 
              antioxidant activity and health-relevant functionality of select 
              grain sprouts and seedlings. Innovative Food Science & Emerging 
              Technologies 9(3): 355-364.  Sanarico, D., Motta, S., Bertolini, L. & Antonelli, A. 
              2003. HPLC determination of organic acids in traditional balsamic 
              vinegar of Reggio emilia. Journal 
              of Liquid Chromatography & Related Technologies 26(13): 
              2177-2187.  Su, M.S. & Chien, P.J. 2007. Antioxidant activity, anthocyanins, and 
              phenolics of rabbiteye blueberry 
              (Vaccinium ashei) 
              fluid products as affected by fermentation. Food Chemistry 
              104(1): 182-187.  Usman, M., Davidson, J. & Books, 
              M.C. 2015. Health Benefits of Papaya - for Cooking and Healing. 
              Mendon: Mendon Cottage Books.  Van Den Broeck, 
              I., Ludikhuyze, L., Weemaes, 
              C., Van Loey, A. & Hendrickx, 
              M. 1998. Kinetics for isobaric-isothermal degradation of l-ascorbic 
              acid. Journal of Agricultural and Food Chemistry 46(5): 2001-2006. 
               Vithlani, V.A. & Patel, H.V. 2010. Production 
              of functional vinegar from Indian jujube (Zizyphus 
              mauritiana) and its antioxidant properties. 
              Journal of Food Technology 8(3): 143-149.  Wood, T.M. & Bhat, K.M. 1988. 
              Methods for measuring cellulase activities. 
              Methods in Enzymology 160: 87-112.  Zuhair, R.A., Aminah, 
              A., Sahilah, A.M. & Eqbal, 
              D. 2013. Antioxidant activity and physicochemical properties changes 
              of papaya (Carica papaya L. 
              cv. Hongkong) during different ripening stage. International 
              Food Research Journal 20(4): 1653-1659.      *Pengarang 
              untuk surat-menyurat; 
              email: joe@ukm.edu.my 
        
                   
                    |