Sains Malaysiana 47(9)(2018): 2073–2082

http://dx.doi.org/10.17576/jsm-2018-4709-15

 

Penghidrogenan Getah Asli Cecair menggunakan Sistem Mangkin Selenium

(Hydrogenation of Liquid Natural Rubber using Selenium-Catalyzed System)

 

NUR AIDASYAKIRAH MOHD TAHIR1, MOHAMAD SHAHRUL FIZREE IDRIS1, MUHAMMAD JEFRI MOHD YUSOF1 & SITI FAIRUS M. YUSOFF1,2*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Centre (PORCE), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 27 Mac 2018/Diterima: 17 Mei 2018

 

ABSTRAK

Kaedah rangsangan permukaan (RSM) dengan reka bentuk komposit putaran tengah (CCRD) telah digunakan untuk mengoptimumkan parameter bagi penghidrogenan getah asli cecair (LNR) dalam sistem hidrazin hidrat (HH) dan hidrogen peroksida (H2O2) dengan kehadiran selenium sebagai mangkin. Parameter yang dikaji bagi tindak balas ini adalah nisbah mol HH:LNR (1.25-2.25), nisbah mol H2O2:LNR (1.25-2.25), suhu (40-80°C) dan masa tindak balas (4-8 jam). Berdasarkan data yang diperoleh, penghasilan getah asli cecair terhidrogen (HLNR) sesuai dijelaskan dengan model kuadratik. Model kuadratik ini mempunyai nilai pekali penentuan (R2) sebanyak 0.9596 yang menunjukkan korelasi yang tinggi antara peratus penghidrogenan sebenar dengan peratus yang telah diramalkan. Berdasarkan plot permukaan tindak balas 3D, suhu tindak balas memainkan peranan penting dalam penghidrogenan LNR. Keadaan optimum yang diperoleh melalui RSM bagi kajian ini adalah nisbah mol HH:LNR pada 1.50, nisbah mol H2O2:LNR pada 2.00, suhu tindak balas pada 53.34°C dengan masa tindak balas selama 5.21 jam yang memberikan peratusan penghidrogenan HLNR sebanyak 68.98%. Persamaan polinomial kuadratik yang diperoleh daripada RSM ini berguna untuk menghasilkan HLNR dengan peratusan penghidrogenan yang dikehendaki.

 

Kata kunci: Getah asli cecair (LNR); kaedah rangsangan permukaan (RSM); penghidrogenan; reka bentuk komposit putaran tengah (CCRD); selenium

 

ABSTRACT

Response surface methodology (RSM) with central composite rotatable design (CCRD) was used to optimize the hydrogenation parameters of liquid natural rubber (LNR) in hydrazine hydrate (HH) and hydrogen peroxide (H2O2) system in the presence of selenium as catalyst. The parameters studied in this research were the mole ratio of HH:LNR (1.25-2.25), mole ratio of H2O2:LNR (1.25-2.25), reaction temperature (40-80°C) and reaction time (4-8 h). Based on the data obtained, hydrogenation of LNR fit the quadratic model. This quadratic model had the determination coefficient (R2) of 0.9596 that showed high correlation between the actual hydrogenation percentages and the predicted percentages. Based on the 3D surface plot, the reaction temperature played an important role in the hydrogenation of LNR. The optimum conditions for hydrogenation of LNR in hydrazine hydrate/hydrogen peroxide system in the presence of selenium catalyst were as follows: mole ratio of HH:LNR of 1.50, mole ratio of H2O2:LNR of 2.00, reaction temperature of 53.34°C and reaction time of 5.21 h that yielded 68.98% of hydrogenated product. Quadratic polynomial equation that was obtained from RSM is useful in preparing HLNR with desired hydrogenation percentages.

 

Keywords: Central composite rotatable design (CCRD); hydrogenation; liquid natural rubber (LNR); response surface methodology (RSM); selenium

RUJUKAN

Alshaibani, A.M., Yaakob, Z., Alsobaai, A.M. & Sahri, M. 2014. Optimization of Pd-B/γ-Al2O3 catalyst preparation for palm oil hydrogenation by response surface methodology (RSM). Brazilian Journal of Chemical Engineering 31(1): 69-78.

Baş, D. & Boyacı, İ.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering 78(3): 836-845.

De Sarkar, M., De, P.P. & Bhowmick, A.K. 1997. Thermoplastic elastomeric hydrogenated styrene-butadiene elastomer: Optimization of reaction conditions, thermodynamics, and kinetics. Journal of Applied Polymer Science 66(6): 1151-1162.

Gazaley, K.F. & Mente, P.G. 1986. Method for Reducing the Molecular Weight of Rubber Latex. Malaysian Patent MY- 1003040A.

Hamizah, M.R., Nur Hanis Adila, A., Naharullah, J. & Siti Fairus, M.Y. 2016. Mild approach for non-catalytic hydrogenation of liquid natural rubber using 2, 4, 6-trimethylbenzenesulfonyl hydrazide as the diimide source. Bulletin of the Korean Chemical Society 37(6): 797-801.

Hamzaoui, A.H., Jamoussi, B. & M’nif, A. 2008. Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy 90(1): 1-7.

Hinchiranan, N., Prasassarakich, P. & Rempel, G.L. 2006. Hydrogenation of synthetic cis-1,4-poly(isoprene) and natural rubber catalyzed by [Ir(COD)py(Pcy3)PF6]. Journal of Applied Polymer Science 100: 4219-4233.

Ibrahim Abdullah. 1996. Process for Manufacturing Liquid Natural Rubber (LNR). Malaysian Patent MY-108852-A.

Kargarzadeh, H., Ahmad, I., Abdullah, I., Thomas, R., Dufresne, A., Thomas, S. & Hassan, A. 2014. Functionalized liquid natural rubber and liquid epoxidized natural rubber: A promising green toughening agent for polyester. Journal of Applied Polymer Science 132(3): 41292.

Kodama, S., Nishi, K. & Furukawa, M. 2003. Preparation of low molecular weight natural rubber by ozonolysis of high ammonia latex. Journal of Rubber Research 6(3): 153-163.

Kondo, K., Murai, S. & Sonoda, N. 1977. Selenium catalyzed generation of diimide from hydrazine: Selenium as a novel oxidizing reagent. Tetrahedron Letters 18(42): 3727-3730.

Kongsinlark, A., Rempel, G.L. & Prasassarakich, P. 2012. Synthesis of nanosized ethylene-propylene rubber latex via polyisoprene hydrogenation. Journal of Applied Polymer Science 127(5): 3622-3632.

Li, Y., Lu, J., Gu, G. & Mao, Z. 2005. Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response surface methodology. Journal of the American Society of Brewing Chemists 63(4): 171-176.

Lin, X., Pan, Q. & Rempel, G.L. 2005. Gel formation in diimide-hydrogenated polymers. Journal of Applied Polymer Science 96(4): 1122-1125.

Leow, D., Chen, Y.H., Hung, T.H., Su, Y. & Lin, Y.Z. 2014. Photodriven transfer hydrogenation of olefins. European Journal of Organic Chemistry 2014(33): 7347-7352.

Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nystrom, A., Pettersen, J. & Bergman, R. 1998. Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems 42(1): 3-40.

Mahittikul, A., Prasassarakich, P. & Rempel, G.L. 2007. Diimide hydrogenation of natural rubber latex. Journal of Applied Polymer Science 105(3): 1188-1199.

Naharullah, J., Muhammad Jefri, M.Y. & Siti Fairus, M.Y. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239.

Nor, H.M. & Ebdon, J.R. 1998. Telechelic liquid natural rubber: A review. Progress in Polymer Science 23(2): 143-177.

Nur Hanis Adila, A., Naharullah, J., Hamizah, M.R., Muhammad Jefri, M.Y. & Siti Fairus, M.Y. 2015. Studies on hydrogenation of liquid natural rubber using diimide. International Journal of Polymer Science 2015: 1-6.

Ou, H., Wang, Y., Zhou, W. & Peng, X. 2016. Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catalysis Communications 84: 183-187.

Pisuttisap, A., Hinchiranan, N., Rempel, G.L. & Prasassarakich, P. 2012. ABS modified with hydrogenated polystyrene-grafted-natural rubber. Journal of Applied Polymer Science 129: 94-104.

Piya-areetham, P., Rempel, G.L. & Prasassarakich, P. 2014. Hydrogenated nanosized polyisoprene as a thermal and ozone stabilizer for natural rubber blends. Polymer Degradation and Stability 102(1): 112-121.

Ravindran, T., Nayar, M.R. & Francis, D.J. 1986. A novel method for the preparation of hydroxyl terminated liquid natural rubber. Macromolecular Rapid Communication 7(3): 159-163.

Samran, J., Phinyocheep, P., Daniel, P. & Kittipoom, S. 2005. Hydrogenation of unsaturated rubbers using diimide as a reducing agent. Journal of Applied Polymer Science 95(1): 16-27.

Sakdapipanich, J., Suksawad, P., Insom, K. & Kawahara, S. 2005. Preparation of functionalized low molecular weight natural rubber latex using solid nanometric TiO3 film as a photocatalyst. Rubber Chemistry and Technology 78(4): 597-605.

Simma, K., Rempel, G.L. & Prasassarakich, P. 2009. Improving thermal and ozone stability of skim natural rubber by diimide reduction. Polymer Degradation and Stability 94(11): 1914- 1923.

Siti Zaleha, I., Rusiyah, Y., Aziz, H. & Tahir, M. 2007. The influence of temperature and reaction time in the degradation of natural rubber latex. Malaysian Journal of Analytical Sciences 11(1): 42-48.

Schulz, G.A., Comin, E. & de Souza, R.F. 2012. Kinetics of the hydrogenation of NBR by hydrazine and oxygen, using selenium as a catalyst. Journal of Applied Polymer Science 123(6): 3605-3609.

Suhawati, I., Rusli, D. & Ibrahim, A. 2014. Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers 6(12): 2928-2941.

Wang, X., Zhang, L., Han, Y., Shi, X., Wang, W. & Yue, D. 2013. New method for hydrogenating NBR latex. Journal of Applied Polymer Science 127(6): 4764-4768.

Wideman, L.G. 1984. Heating with Oxidant, Hydrazine and Metal Salt. U.S. Patent 4452950 A.

Yusof, M.J.M., Abdullah, I. & M Yusoff, S.F. 2017. Sintesis dan pencirian getah asli cecair terhidrogen untuk adunan polimer. Sains Malaysiana 46(10): 1817-1823.

Zhou, S., Bai, H. & Wang, J. 2003. Hydrogenation of acrylonitrile-butadiene rubber latexes. Journal of Applied Polymer Science 91(4): 2072-2078.

 

*Pengarang untuk surat-menyurat; email: sitifairus@ukm.edu.my

 

 

 

 

 

 

sebelumnya