Sains Malaysiana 47(9)(2018): 2091–2098
http://dx.doi.org/10.17576/jsm-2018-4709-17
Kesan Garam Litium Nitrat
terhadap Sifat
Elektrokimia Karboksimetil Kitosan
(The Effect of Lithium Nitrate towards Electrochemical Properties
of Carboxymethyl Chitosan)
N.N.
MOBARAK*,
F.N.
JANTAN,
N.A.
DZULKURNAIN,
A.
AHMAD
& M.P. ABDULLAH
School of Chemical Sciences
and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 31 Mac 2018/Diterima: 17 Mei 2018
ABSTRAK
Karboksimetil kitosan menunjukkan
potensi untuk
digunakan sebagai polimer induk bagi
aplikasi elektrolit
polimer pepejal. Kesan garam litium
nitrat terhadap
sifat elektrokimia elektrolit polimer pepejal berasaskan karboksimetil kitosan telah dijalankan. Elektrolit polimer pepejal berasaskan karboksimetil kitosan disediakan melalui teknik pengacuan larutan dengan nisbah garam litium
nitrat (LiNO3)
yang berbeza. Pencirian
filem telah dijalankan
dengan menggunakan
spektroskopi inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR)
dan Spektroskopi
Impedans Elektrokimia (EIS)
bagi penentuan
interaksi kimia dan sifat elektrokimia
polimer elektrolit
tersebut. Spektrum ATR-FTIR
menunjukkan ion litium
cenderung untuk
berinteraksi dengan kumpulan karbonil dan kumpulan ester dalam struktur karboksimetil kitosan. Kekonduksian ion tertinggi yang
dicapai adalah 8.44 × 10-4
S cm-1 dengan
kepekatan garam
30 bt. % LiNO3 pada suhu bilik
dan 5.25 × 10-3 S
cm−1 pada
suhu 70°C. Filem
karboksimetil kitosan-30% LiNO3 mencapai kestabilan secara elektrokimia sehingga 2.94 V. Keputusan kajian yang diperoleh menunjukkan elektrolit polimer pepejal berasaskan karboksimetil kitosan memberi satu tarikan baru
bagi aplikasi
bateri ion litium.
Kata kunci: Elektrolit polimer pepejal; FTIR;
karboksimetil kitosan;
sifat elektrokimia
ABSTRACT
Carboxymethyl chitosan has showed its potential to be used as host polymer for
solid polymer electrolyte application. The effect of lithium nitrate
towards electrochemical properties of solid polymer electrolyte
based carboxymethyl chitosan has been investigated. Solid bio-polymer
electrolyte based carboxymethyl chitosan
was prepared by solution-casting technique with different ratios
of lithium nitrate (LiNO3) salt. The films were characterized
by attenuated total reflected Fourier transform infrared (ATR-FTIR)
Spectroscopy and Electrochemical Impedance Spectroscopy to determine
the chemical interaction and electrochemical properties of the polymer
electrolytes. Based on ATR-FTIR spectra, the lithium ions tend
to interact with carbonyl group and ether group in carboxymethyl
chitosan structure. The highest conductivity achieved was 8.44 ×
10-4
S cm-1 with a concentration of 30 wt.
% of LiNO3 salt at room temperature and
5.25 × 10-3 S cm−1 at
70°C. The films were electrochemically stable up to 2.94 V. The
results suggest that this solid polymer electrolyte based on carboxymethyl
chitosan demonstrate potential to be applied in lithium ion batteries.
Keywords: Carboxymethyl chitosan; electrochemical
properties; FTIR; solid polymer
electrolyte
RUJUKAN
Abdullah, O.G., Hanna,
R.R., Salman, Y.A.K. & Aziz, S. 2018. Characterization of lithium
ion-conducting blend biopolymer electrolyte based on CH–MC doped
with LiBF4. Journal of Inorganic and Organometallic Polymers
and Materials 28(4): 1432-1438.
Ahmad, N.H. & Isa,
M.I.N. 2016. Ionic conductivity and electrical properties of carboxymethyl cellulose - NH4Cl solid polymer electrolytes.
Journal of Engineering Science and Technology 11(6): 839-847.
Croisier, F. & Jérôme, C. 2013. Chitosan-based biomaterials for tissue engineering.
European Polymer Journal 49(4): 780-792.
Denaro, A.R. 1987. Elektrokimia Permulaan.
Kuala Lumpur: Dewan Bahasa dan Pustaka.
Hanibah, H., Ahmad, A. &
Hassan, N.H. 2014. A new approach in determining limiting molar
conductivity value for liquid electrolyte. Electrochimica
Acta 147: 758-764.
Hargreaves, S. 2013.
The battery that grounded Boeing. http:// money.cnn.com/2013/01/17/technology/boeing-battery.
Hoek, C. 1995. Algae:
An Introduction to Phycology. Cambridge: Cambridge University
Press.
Hudson, S.M.
& Smith, C. 1998. Polysaccharides: Chitin and chitosan: chemistry
and technology of their use as structural materials, Dlm.
Biopolymers from Renewable Resources, disunting
oleh Kaplan, D. New York: Springer. pp.
96-119.
Khanmirzaei, M.H. & Ramesh,
S. 2013. Ionic transport and FTIR properties of lithium iodide doped
biodegradable rice starch based polymer electrolytes. International
Journal of Electrochemical Science 8: 9977-9991.
Masykur, A.,
Santosa, S.J., Siswanta,
D. & Jumina, J. 2014. Synthesis
of Pb (Ii) Imprinted carboxymethyl
chitosan and the application as sorbent for Pb
(Ii) ion. Indonesian Journal of Chemistry 14(2): 152-159.
Mobarak, N.N.,
Ahmad, A., Abdullah, M., Ramli, N. &
Rahman, M. 2013.
Conductivity enhancement via chemical modification of chitosan based
green polymer electrolyte. Electrochimica
Acta 92: 161-167.
Mobarak, N.N.,
Jumaah, F.N., Ghani, M.A., Abdullah, M.P.
& Ahmad, A. 2015.
Carboxymethyl carrageenan based biopolymer
electrolytes. Electrochimica
Acta 175: 224-231.
Mohamed,
N.S., Subban, R.H.Y. & Arof,
A.K. 1995.
Polymer batteries fabricated from lithium complexed acetylated chitosan.
Journal of Power Sources 56: 153-156.
Osman,
Z., Mohd Ghazali,
M.I., Othman, L. & Md Isa, K.B. 2012. AC ionic conductivity
and DC polarization method of lithium ion transport in PMMA-LiBF4
gel polymer electrolytes. Physic 2: 1-4.
Pavia,
D., Lampman, G., Kriz,
G. & Vyvyan, J. 2008.
Introduction to Spectroscopy. Cengage
Learning.
Ravi,
M., Bhavani, S., Kiran Kumar, K. &
Narasimaha Rao, V.V.R. 2013. Investigations on electrical properties
of PVP: KiO4 polymer electrolyte films. Solid State Sciences
19: 85-93.
Rudhziah, S.,
Ahmad, A. & Mohamed, N. 2016. The effect of
lithium iodide to the properties of carboxymethyl
κ-Carrageenan/carboxymethyl cellulose
polymer electrolyte and dye-sensitized solar cell performance.
Polymers 8(5): 163.
Sim,
L.N., Majid, S.R. & Arof, A.K. 2012. FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with
LiCF3SO3 salt. Vibrational Spectroscopy 58: 57-66.
Singh,
R., Singh, P.K., Tomar, S.K. & Bhattacharya,
B. 2016.
Synthesis, characterization, and dye-sensitized
solar cell fabrication using solid biopolymer electrolyte membranes.
High Performance Polymers 28(1): 47-54.
Wu, C., Wu, F., Bai,
Y., Feng, T., Pan, C., Ye, L. & Feng, G.Z. 2009. Preparation
and characteristics of novel hyperbranched
PEU-based gel polymer electrolytes. Journal of the Chilean
Chemical Society 54(3): 299-301.
Xiong, S.,
Xie, K., Diao,
Y. & Hong, X. 2012.
Properties of surface film on lithium anode with LiNO3 as lithium
salt in electrolyte solution for lithium-sulfur batteries. Electrochimica
Acta 83: 78-86.
Zamri, S.F.M.,
Latif, F.A., Ali, A.M.M., Ibrahim, R., Kamaluddin,
N. & Hadip, F. 2014. Ionic conductivity and
dielectric properties of LiBF4 doped PMMA/ENR 50 filled acid modified
SiO2 electrolytes. Procedia Technology 15:
849- 855.
Zhou, D., Wang, G., Li,
W., Li, G., Tan, C., Rao, M. & Liao, Y. 2008. Preparation
and performances of porous polyacrylonitrile-methyl
methacrylate membrane for lithium-ion batteries. Journal
of Power Sources 184(2): 477-480.
*Pengarang untuk surat-menyurat; email: nadhratunnaiim@ukm.edu.my
|