Sains Malaysiana 47(9)(2018): 2141–2149
http://dx.doi.org/10.17576/jsm-2018-4709-23
Mechanical and Bioactive Properties of Mullite
Reinforced Pseudowollastonite Biocomposite
(Sifat Mekanik dan
Kebioaktifan Biokomposit
Pseudowolastonit Diperkuat dengan Mulit)
FARAH ‘ATIQAH
ABDUL
AZAM1,
ROSLINDA
SHAMSUDIN1*,
MIN
HWEI
NG2,
ZALITA
ZAINUDDIN1,
MUHAMMAD
AZMI
ABDUL
HAMID1
& RASHITA ABDUL RASHID3
1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Tissue Engineering Centre, 12th Floor, Clinical Block, UKM Medical
Centre, 56000 Cheras, Kuala Lumpur, Wilayah
Persekutuan, Malaysia
3Mineral Research Centre, Minerals, and Geoscience Department, 31400
Ipoh, Perak Darul Ridzuan,
Malaysia
Diserahkan: 14 Mac 2018/Diterima: 2 Jun
2018
ABSTRACT
Bioactive composites
consist of pseudowollastonite and mullite
synthesized from natural resources was developed for bone implant
applications. To realize such applications, a mechanical test of
these composites and in vitro bioactivity in SBF solution were studied. The present
paper reports pseudowollastonite synthesized
from the rice husk ash and limestone reinforced with 10, 20 and
30 wt. % of mullite. Influence of sintering temperature, phase composition,
morphology towards mechanical properties of various pseudowollastonite-mullite (PSW-M)
composites was examined prior to the bioactivity test. It was found
that pseudowollastonite with the addition of 20 wt. % of mullite sintered at 1150°C gave the best result for
diametral tensile strength (DTS)
and hardness with the value of 8.8 ± 0.15 MPa and 3.79 ± 0.13 GPa, respectively. The obvious increment in the mechanical
strength was due to the formation of liquid phase CaAl2O3 during
sintering at 1150°C. In addition, the formation of fibrous
apatite (HA)
layer of amorphous calcium phosphate (ACP) with Ca/P ratio 1.8 on PSW20M
sample confirmed the good bioactivity of the composite.
Keywords: Bioactivity;
mechanical; mullite; pseudowollastonite
ABSTRAK
Komposit bioaktif yang terdiri
daripada pseudowolastonit
dan mulit disintesis
daripada sumber
semula jadi telah
dibangunkan untuk
aplikasi implan tulang. Untuk merealisasikan aplikasi ini, ujian mekanik
dan kebioaktifan
secara in vitro dalam larutan badan
tersimulasi (SBF) bagi
komposit ini
telah dijalankan. Kajian pada kali ini melaporkan pseudowolastonit yang disintesis
daripada abu sekam
padi dan batu kapur yang diperkuat dengan 10, 20 dan 30 % bt.
kandungan mulit.
Pengaruh suhu sinteran, komposisi, fasa dan morfologi terhadap
sifat mekanik
komposit pseudowolastonit-mulit
(PSW-M)
telah dianalisis
sebelum ujian kebioaktifan
dijalankan. Keputusan
mendapati pseudowolastonit
dengan penambahan 20 % bt. mulit
yang disinter pada suhu
1150°C memberikan hasil
yang terbaik untuk
kekuatan regangan diameter (DTS)
dan kekerasan
masing-masing dengan nilai 8.8 ± 0.15 MPa dan 3.79 ±
0.13 GPa. Peningkatan
kekuatan mekanik yang ketara ini adalah
disebabkan oleh
pembentukan fasa cair CaAl2O3 semasa proses sinteran pada suhu 1150°C. Di samping itu, pembentukan
lapisan apatit
(HA)
jenis kalsium
fosfat amorfus (ACP)
dengan nisbah (Ca / P: 1.8) bagi sampel PSW20M
pada hari ke-7
membuktikan kebioaktifan yang baik daripada komposit
ini.
Kata kunci: Kebioaktifan;
mekanik; mulit;
pseudowolastonit
RUJUKAN
Anjaneyulu, U. & Sasikumar, S. 2014. Bioactive
nanocrystalline wollastonite
synthesized by sol-gel combustion. Materials Science 37(2):
207-212.
ASTM C 496/C 496M - 04. 2011. Standard Test
Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
Annual Book of ASTM Standards Volume 04.02. pp. 1-5.
Bakr, I.M. 2012. Sintering of mullite with the aid of wollastonite.
InterCeram: International Ceramic
Review. pp. 58-62.
Best, S.M., Porter, A.E., Thian, E.S. &
Huang, J. 2008. Bioceramics: Past, present and for the
future. Journal of the European Ceramic Society 28(7): 1319-1327.
Bieniawski, Z.T. & Hawkes,
I. 1978. Suggested methods for determining tensile strength
of rock materials. International Society for Rock Mechanics
Commission on Standardization of Laboratory and Field Tests 15:
99-103.
Cannillo, V., Colmenares-Angulo, J., Lusvarghi, L., Pierli, F. &
Sampath, S. 2009. In vitro characterisation
of plasma-sprayed apatite/wollastonite
glass-ceramic biocoatings on titanium alloys. Journal of the European
Ceramic Society 29(9): 1665-1677.
Chen, C.C., Ho, C.C., Lin, S.Y. & Ding, S.J. 2015. Green synthesis of calcium silicate bioceramic
powders. Ceramics International 41(4): 5445-5453.
De Aza, P.N.,
De Aza, A.H., Herrera, A., Lopez-Prats, F.A. & Pena, P. 2006.
Influence of sterilization techniques on the in vitro bioactivity
of pseudowollastonite. Journal of the American Ceramic Society
89(8): 2619-2624.
De La Casa-Lillo,
M.A., Velásquez, P. & De Aza, P.N.
2011. Influence of thermal treatment on the in vitro bioactivity
of wollastonite materials. Journal of Materials Science: Materials
in Medicine 22(4): 907-915.
Ding, S.J.,
Shie, M.Y. & Wang, C.Y. 2009. Novel
fast-setting calcium silicate bone cements with high bioactivity
and enhanced osteogenesis in vitro. Journal of Materials
Chemistry 19(8): 1183-1190.
Dorozhkin, S.V. 2007. Biomaterials for medicine. Glass and Ceramics 64: 442-447.
Elghazel, A., Taktak, R. & Bouaziz, J. 2015. Determination of elastic modulus, tensile strength and fracture
toughness of bioceramics using the flattened
Brazilian disc specimen: Analytical and numerical results. Ceramics
International 41(9): 12340-12348.
Engqvist, H., Edlund, S., Gomez-Ortega, G., Loof, J. & Hermansson, L. 2006.
In vitro mechanical properties of a calcium silicate based
bone void filler. Key Engineering Materials 309-311: 829-832.
Gautier, S., Champion, E. & Bernache-Assollant,
D. 1997. Processing, microstructure and toughness of Al2O3
platelet-reinforced hydroxyapatite. Journal of the European
Ceramic Society 17(11): 1361-1369.
Hamisah, I., Shamsudin, R., Abdul Hamid, M.A. & Rozidawati,
A. 2016. Mechanism of apatite formation on β-wollastonite
sample surface synthesized from rice husk ash. Sains
Malaysiana 45(12): 1779-1785.
Hamisah, I., Shamsudin, R., Abdul Hamid, M.A. & Jalar,
A. 2013. Synthesis and characterization of nano-wollastonite
from rice husk ash and limestone. Materials Science Forum 756:
43-47.
Harabi, A. & Chehlatt, S. 2013. Preparation process of a highly resistant wollastonite
bioceramics using local raw materials.
Journal of Thermal Analysis and Calorimetry 111(1): 203-
211.
Horng, Y.J. & Min, H.H.
1994. Fabrication and mechanical properties of hydroxyapatite-alumina
composites. Materials Science and Engineering: C 2(1-2):
77-81.
Hsu, Y.H., Turner, I.G. & Miles, A.W. 2007. Mechanical
characterization of dense calcium phosphate bioceramics
with interconnected porosity. Journal of Materials Science: Materials
in Medicine 18(12): 2319-2329.
Ji, H. & Marquis, P.M. 1992. Preparation and characterization
of Al2O3 reinforced hydroxyapatite. Biomaterials
13(11): 744-748.
Kim, H.W.,
Kong, Y.M., Koh, Y.H., Kim, H.E., Kim,
H.M. & Ko, J.S. 2003. Pressureless sintering and mechanical
and biological properties of fluor-hydroxyapatite
composites with zirconia. Journal of
the American Ceramic Society 86(12): 2019-2026.
Kokubo, T. & Takadama, H. 2006. How useful is SBF in
predicting in vivo bone bioactivity? Biomaterials 27(15):
2907-2915.
Liu, X. & Ding, C. 2002. Characterization of
plasma sprayed wollastonite powder and
coatings. Surface and Coatings Technology 153(2001): 173-177.
Maitra, S., Rahaman, A., Sarkar, A. &
Tarafdar, A. 2006. Zirconia-mullite materials prepared from semi-colloidal route derived
precursors. Ceramics International 32(2): 201-206.
Marghussian, V.K. & Sheikh-Mehdi Mesgar, A. 2000.
Effects of composition on crystallization behaviour
and mechanical 2149
properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5
system. Ceramics International 26(4): 415-420.
Nath, S., Dubey, A.K. &
Basu, B. 2012. Mechanical
properties of novel calcium phosphate-mullite
biocomposites. Journal of Biomaterials Applications
27(1): 67-78.
Nath, S., Kalmodia, S. & Basu, B. 2011. In vitro biocompatibility of novel biphasic calcium phosphate-mullite
composites. Journal of Biomaterials Applications 27(5):
497-509.
Nath, S., Kalmodia, S. & Basu, B. 2010. Densification,
phase stability and in vitro biocompatibility property of
hydroxyapatite-10 wt. % silver composites. Journal
of Materials Science. Materials in Medicine 21(4):
1273-1287.
Nath, S., Biswas, K. &
Basu, B. 2008. Phase stability and
microstructure development in hydroxyapatite-mullite
system. Scripta Materialia
58(12): 1054-1057.
Osendi, M.I. & Baudı ´n, C. 1983. Mechanical
properties of mullite materials.
Journal of the American Ceramic Society 66(10): 699-703.
Park, J.B. & Bronzino, J.D. 2002. Biomaterials:
Principles and Applications. Boca Raton: CRC Press.
Pilliar, R.M., Filiaggi, M.J., Wells, J.D., Grynpas,
M.D. & Kandel, R.A. 2001. Porous calcium
polyphosphate scaffolds for bone substitute applications-in vitro
characterization. Biomaterials 22: 963-972.
Schneider, H., Schreuer, J. & Hildmann, B. 2008. Structure
and properties of mullite- A review.
Journal of the European Ceramic Society 28(2): 329-344.
Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S.C., Kadri, N.A. &
Abu Osman, N.A. 2014. Mechanical and physical
properties of calcium silicate/alumina composite for biomedical
engineering applications. Journal of the Mechanical Behavior
of Biomedical Materials 30: 168-175.
Silva, V.V., Lameiras, F.S. & Domingues, R.Z. 2001. Microstructural
and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics
for biomedical applications. Composites Science and Technology
61(2): 301-310.
Zhang, J., Iwasa, M., Kotobuki, N., Tanaka,
T., Hirose, M., Ohgushi, H. & Jiang,
D. 2006. Fabrication of hydroxyapatite-zirconia composites
for orthopedic applications. Journal of the American Ceramic
Society 89(11): 3348-3355.
Zhao, J.C., Smith, J.F., Schiffman, R.S.
& Merchant, S.M. 2007. Methods for Phase
Diagram Determination. New York: Elsevier.
*Pengarang untuk surat-menyurat; email: linda@ukm.edu.my
|