Sains Malaysiana 47(9)(2018): 2231–2240
http://dx.doi.org/10.17576/jsm-2018-4709-34
Penambahbaikan Sumber Jabatan Kecemasan menggunakan Kaedah Simulasi dan Analisis Pengumpulan
Data
(Resources Improvement in Emergency Department using Simulation
and Data Envelopment Analysis)
WAN MALISSA
WAN
MOHD
AMINUDDIN,
WAN
ROSMANIRA
ISMAIL*
& HUSYAIRI HARUNARASHID
Pusat Pengajian
Sains Matematik,
Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 20 September 2017/Diterima: 5 Mei 2018
ABSTRAK
Jabatan Kecemasan Pusat
Perubatan Universiti
Kebangsaan Malaysia (PPUKM) menerima
kedatangan pesakit
yang ramai pada setiap
hari menyebabkan
jabatan ini kerap
berdepan dengan
masalah kesesakan. Justeru, objektif kajian
ini adalah
mengenal pasti model pengoptimuman terbaik untuk menambahbaik sumber bagi meningkatkan
tahap kecekapan
Jabatan Kecemasan PPUKM dan menyelesaikan masalah kesesakan jabatan. Kaedah simulasi digunakan
bagi membina
model jabatan kecemasan dengan pemboleh ubah yang digunakan dalam pemodelan simulasi ini adalah
dikhususkan berdasarkan
zon atau ruang
rawatan. Alternatif penambahbaikan yang dicadangkan
ini mengandungi
konfigurasi bilangan sumber jabatan yang baru. Enam model gabungan yang digunakan terdiri daripada Model CCR
dan Set Rujukan, Model BCC
dan Set Rujukan, Model CCR
dan Kecekapan-Super, Model BCC
dan Kecekapan-Super, Model Bi-Objektif MCDEA-CCR dan
Kecekapan Silang
dan Model Bi-Objektif MCDEA-BCC
dan Kecekapan
Silang. Model Bi-Objektif MCDEA-BCC merupakan
lanjutan kepada
Model Bi-Objektif MCDEA-CCR daripada
kajian terdahulu.
Keputusan kajian menunjukkan Model Bi-Objektif MCDEA-BCC
yang dibina telah
memberikan bilangan
alternatif penambahbaikan cekap yang paling kecil berbanding model-model gabungan
lain. Melalui model gabungan ini
juga satu alternatif
penambahbaikan yang optimum yang telah
dicadangkan dapat
mengurangkan masa menunggu pesakit di Zon Hijau sebanyak 51% manakala peratusan penggunaan tenaga kerja sumber berjaya
ditambahbaik agar lebih
munasabah. Alternatif ini memerlukan
susun atur
kembali kedudukan sumber tanpa melakukan
perubahan yang besar
ke atas sistem
asal.
Kata kunci: Analisis Pengumpulan Data; jabatan kecemasan; kesesakan; pengoptimuman sumber; simulasi
ABSTRACT
The Emergency Department
of Universiti Kebangsaan
Medical Centre (PPUKM) receives a high number of patients
daily resulted in numerous problems particularly overcrowding.
Therefore, this study is designed to identify the best optimization
model that improve resources in order
to improve the efficiency level of the PPUKM
Emergency Department and solve the overcrowding
problem. Simulation technique is used to build a simulation model
of the emergency department where the variables used in the model
are specified by triage zones or treatment areas. The proposed
alternative improvements contains a new
configuration of department resources. Six combined models used
are the CCR Model and Reference Set, BCC
Model and Reference Set, CCR Model and Super-Efficiency, BCC
Model and Super-Efficiency, Bi-Objective MCDEA-CCR Model and Cross-Efficiency
and Bi-Objective MCDEA-BCC Model and Cross Efficiency.
Bi-Objective MCDEA-BCC Model is a continuation of
Bi-Objective MCDEA-CCR Model from previous studies. The results showed
that the Bi-Objective MCDEA-BCC Model has derived the least
number of efficient alternative improvements compared to other
combined models. It also suggested an optimum alternative that
can reduce the patient waiting time in the Green Zone by 51% while
the percentage of resource utilisation has been improved to be more reasonable. This
alternative needs redesigning the department’s resources without
making major changes to the original system.
Keywords: Data Envelopment
Analysis; emergency department; overcrowding; resource optimisation;
simulation
RUJUKAN
Aboukanda,
E. & Latif, M. 2013. Exploiting simulation
to reduce patient waiting time using a streaming strategy in an
emergency department. International Journal of Advanced
Technology & Engineering Research 3(2): 79-86.
Aiken,
H.L., Charles, S.P., Sloane, D.M., Sochalski,
J. & Silber, S.H. 2002. Hospital nurse staffing and patient mortality,
nurse burnout and job dissatisfaction. JAMA 288(16): 1987-1993.
Al-Refaie, A., Fouad, R.H., Li, M. & Shurrab,
M. 2014. Applying simulation and DEA to improve
performance of emergency department in a Jordanian hospital.
Simulation Modelling Practice and Theory 41: 59-72.
Aminuddin,
W.M.W.M., Ismail, W.R., Harunarashid,
H., Ali, R.A., Ismail, M.S. & Johar,
M. 2016. Utilization
of Emergency Department, UKM Medical Centre: Pattern of patient.
Jurnal Teknologi 4:
53-58.
Andersen,
P. & Petersen, N. 1993. A procedure for
ranking efficient units in data envelopment analysis. Management
Science 39(10): 1261-1264.
Ansari,
Z.M., Yasin, H., Zehra,
N. & Faisal, A. 2015. Occupational stress among Emergency Department
(ED) staff and the need for invesment
in health care; A view from Pakistan.
British Journal of Medicine & Medical Research 10(10):
1-9.
Azadeh,
A., Sepahi, M. & Haghighi,
S.M. 2013. An integrated simulation-DEA approach
to improve quality care of medical centres.
Int. J. Process Management and Benchmarking 3(3): 352-370.
Azaiez, M.N.
& Al-Sharif, S. 2005. A 0-1 goal programming
model for nurse scheduling. Computers & Operations
Research 32(3): 491-507.
Azlan,
N., Saibon, I.M. & Azizol,
M. 2013. Management of emergency department
overcrowding (EDOC) in a teaching hospital. Med. &
Health 8(1): 42-46.
Bal, H.
& Orkc, H.H. 2010. Improving
the discrimination power and weights dispersion in the data envelopment
analysis. Computers & Operations Research 37(1):
99-107.
Banker,
R., Charnes, A. & Cooper, W. 1984. Some
models for estimating technical and scale inefficiencies in data
envelopment analysis. Management Science 30(9): 1078- 1092.
Brailsford, S.C.
2007. Tutorial: Advances and challenges in healthcare simulation
modeling. Proceeding of the 2007 Winter Simulation
Conference. pp. 1436-1448.
Carmen,
R., Defraeye, M. & Van Nieuwenhuyse,
I. 2015. A decision support system for capacity planning in emergency departments.
Int. J. Simul. Model 14(2): 299-312.
Carrilloa,
M. & Jorge, J.M. 2015. A multiobjective
DEA approach to ranking alternatives. Expert Systems
With Applications 12: 1-27.
Carson,
J.S. 2002. Model verification and validation.
Proceeding of the 2002 Winter Simulation
Conference. pp. 52-58.
Carter,
M.W. & Lapierre, S.D. 2001. Scheduling emergency room physicians. Health Care Management
Science 4(4): 347-360.
Centeno,
M.A., Giachetti, R., Linn, R. &
Ismail, A.M. 2003.
A simulation-ILP based tool for scheduling ER staff. Proceeding
of the 2003 Winter Simulation Conference. pp.
1930-1938.
Charnes,
A., Cooper, W. & Rhodes, E. 1978. Measuring the efficiency of decision making units. European
Journal of Operational Research 2(6): 429-444.
Cooper,
W., Seiford, L. & Tone, K. 2007. Data Envelopment Analysis. New York: Springer.
Cowan,
R.M. & Trzeciak, S. 2005. Clinical
review: Emergency department overcrowding and the potential impact
on the critically ill. Critical Care 9(3): 291-295.
Di,
S., Lorenzo, S., Vaughan, L., Lalle,
I., Magrini, L. & Magnanti, M. 2015.
Overcrowding in emergency department: An international
issue. Intern Emerg.
Med. 10(2): 171-175.
Doyle,
J. & Green, R. 1994. Efficiency and cross-efficiency in DEA:
Derivations, meanings and uses. Journal of the Operational
Research Society 45(5): 567-578.
Emrouznejad,
A. 2012. Data Envelopment Analysis Homepage.
http://www.DEAzone.com.
Eskandari,
H., Riyahifard, M., Khosravi,
S. & Geiger, C.D. 2011. Improving the
emergency department performance using simulation and MCDM methods.
Proceeding of 2011 Winter Simulation Conference. pp. 1211-1222.
Francisco,
A., Augusto, F., Marins, S., Tamura,
P.M. & Dias, E.X. 2017. Bi-Objective multiple criteria data envelopment analysis
combined with the overall equipment effectiveness: An application
in an automotive company. Journal of Cleaner Production 157:
278-288.
Gharahighehi,
A., Kheirkhah, A.S., Bagheri,
A. & Rashidi, E. 2016. Improving performances of the emergency department using discrete
event simulation, DEA and the MADM methods. Digital
Health 2: 1-14.
Ghasemi,
M., Ignatius, J. & Emrouznejad,
A. 2014. A bi-objective weighted model for improving the discrimination power
in MCDEA. European Journal of Operational Research 233(3):
640-650.
Holm,
L.B., Luras, H. & Dahl, F.A. 2013. Improving hospital bed utilisation through
simulation and optimisation.
International Journal of Medical Informatics 82(2): 80-89.
Horwitz,
L.I., Green, J. & Bradley, E.H. 2010. US emergency department performance on wait time and length of visit.
Annals Of Emergency Medicine 55(2):
133-141.
Jeenanunta,
C., Ayudhya, S.I.N., Doungraksa,
P., Sereewattanapong, C., Pongtanupattana,
A. & Nuchjarin Intalar. 2013.
Resource analysis in emergency department using simulation-based
framework. 4th International Conference on
Engineering Project and Production Management. pp.
1073-1083.
Jun,
J., Jacobson, S. & Swisher, J. 2013. Application of
discrete-event simulation in health care clinics: A survey. Journal
of the Operational Research Society 50(2): 109-123.
Kelton,
W.D., Sadowski, R.P. & Swets,
N.B. 2010. Simulation with Arena.
New York: McGraw-Hill.
Li,
X. & Reeves, G.R. 1999. A multiple criteria approach to data envelopment analysis.
Engineering and Technology Management 115: 507-517.
Lv, X.,
Li, L., Xu, W. & Rong, X. 2015. Sufficient and comprehensive
measurement of multi-band camouflage screen performance applying
bi-objective super-efficiency dea. The
10th International Conference on Computer Science & Education.
pp. 542-546.
Medical
Development Division.
2012. Emergency Medicine and Trauma Services Policy. http://www.moh.gov.my/index.php/
pages/view/195. Diakses pada 5 Disember
2015.
Moashiri, H.,
Aljunid, S.M., Amin, R.M., Dahlui,
M. & Ibrahim, W.N. 2011. Measuring efficiency of teaching
hospital in Malaysia. International Journal of Business
and Management 6(4): 207-213.
Meza,
L.A. & Lins, M.P.E. 2002. Review of methods for
increasing discrimination in data envelopment analysis. Annals
of Operations Research 116(1-4): 225-242.
Paul, S.A., Reddy, M.C.
& Deflitch, C.J. 2010. A systematic
review of simulation studies investigating emergency department
overcrowding. Simulation 86(8-9): 559-571.
Redeker, G.A., Webber, T., Czekster, R.M., Quickert, S. &
Bowles, J.K.F. 2017. Estimating capacity and
resource allocation in healthcare settings using business process
modelling and simulation. Anais XXXVII
Congresso da Sociedade
Brasileira de Computação. pp. 5-8.
Ruohonen, T.,
Neittaanmaki, P. & Teittinen,
J. 2006.
Simulation model for improving the operation
of the emergency department of special health care. The
Proceeding of 2006 Winter Simulation Conference.
pp. 453-458.
Sarkis, J. 2000. Comparative analysis of DEA as a discrete alternative multicriteria decision tool. European Journal of
Operational Research 123(3): 543-557.
Sexton, T. 1986. Measuring Efficiency: An Assessment of Data Envelopment Analysis.
San Francisco: Jossey-Bass.
Somma, S.D.,
Paladino, L., Vaughan, L., Lalle, I.,
Magrini, L. & Magnanti, M. 2015.
Overcrowding in emergency department: An international
issue. Intern. Emerg. Med. 10(2): 171-175.
Subramaniam, S. 2016. Kementerian Kesihatan
Usaha Tangani Pengurangan
Bajet. https://www.bharian.com.my/ node/181872.
Diakses oleh 10 Ogos
2016.
Tahar, R.M.
2006.
A Practical Approach to Computer Simulation
Modelling. Serdang: Universiti
Putra Malaysia Press.
Unit
Perancang Ekonomi. 2016.
Rancangan Malaysia Ke-Sebelas
2016-2020.
Uriarte, A.G.,
Zuniga, E.R., Moris, M.U. & Ng,
A.H.C. 2015.
System design and improvement of an emergency
department using simulation-based multi-objective optimization.
Journal of Physics 1: 1-11.
Weng, S.,
Tsai, B.S., Wang, L.M. & Chang, C.Y. 2011. Using
simulation and data envelopment analysis in optimal healthcare
efficiency allocations. The Proceeding
of 2011 Winter Simulation Conference. pp. 1295-1305.
Yarmohammadian, M.H.,
Rezaei, F., Haghshenas,
A. & Tavakoli, N. 2017. Overcrowding in emergency
departments: A review of strategies to decrease future challenges.
Journal of Research in Medical Sciences 22(1): 23.
Zeinali, F.,
Mahootch, M. & Sepehri,
M.M. 2015.
Resource planning in the emergency departments: A simulation-based
metamodeling approach. Simulation Modelling Practice and Theory
53: 123-138.
*Pengarang untuk surat-menyurat: email: wrismail@ukm.edu.my