| Sains Malaysiana 48(10)(2019): 2093–2101  http://dx.doi.org/10.17576/jsm-2019-4810-04 
                 Experimental Study of Drying Characteristics 
              and Mathematical Modeling for Air Drying of Germinated Brown Rice (Kajian Eksperimen Ciri Pengeringan dan Model 
              Matematik untuk Pengeringan Udara Beras Perang)   ZHENWEI YU, 
              KHURRAM 
              YOUSAF, 
              YU 
              WANG 
              & KUNJIE CHEN*   Department of Agricultural Engineering, 
              College of Engineering, Nanjing Agricultural University, Nanjing, 
              Jiangsu 210031, P.R. China   Diserahkan: 3 Jun 2019/Diterima: 21 
              Ogos 2019   ABSTRACT In view 
              of existing problems in the drying process of germinated brown rice 
              (GBR), 
              the self-made hot air drying test system was utilized. The drying 
              medium temperature and wind speed were selected as the drying parameters, 
              and different constraints were set for the test. The effects of 
              the drying medium temperature and wind speed on the drying rate 
              and unit energy consumption were examined, and the drying mathematical 
              models of GBR were 
              established. The results perceived that as the temperature rose, 
              and the wind speed increased, the drying rate increased accordingly. 
              When the temperature was above 95°C, wind speed exceeded 3.6 m/s; the drying rate would not change 
              deliberately. When the temperature of the drying medium rose, the 
              change rate during the drying preheating stage and the deceleration 
              stage increased sharply, whereas the drying rate in the constant-speed 
              drying stage increased, and the drying time was greatly shortened. 
              Unit energy consumption decreased with the increase of temperature 
              and increased with increasing wind speed. Furthermore, when the 
              drying temperature was ranged between 50°C and 80°C, the unit energy 
              consumption changed meaningfully; when the medium temperature was 
              between 80°C and 110°C, the unit heat consumption turned slowly. 
              Wang and Singh’s model could best simulate the drying process of 
              GBR within 
              the experimental settings. And then comparing the RMSE and 
              under the various dry conditions, the data of Wang and Singh model 
              were between 1.6% - 2.8% and 2.5×10-4 - 5×10-4. The R2 values of the model were higher 
              than 0.98. Keywords: 
              Drying characteristics; energy consumption; germinated brown rice; 
              mathematical model; moisture content   ABSTRAK Disebabkan 
              masalah sedia ada dalam proses pengeringan percambahan beras perang 
              (GBR), 
              sistem ujian pengeringan udara panas buatan sendiri telah digunakan. 
              Pengeringan suhu sederhana dan kelajuan angin dipilih sebagai parameter 
              pengeringan dan kekangan berbeza ditetapkan untuk ujian. Kesan daripada 
              pengeringan suhu sederhana dan kelajuan angin pada kadar pengeringan 
              dan penggunaan tenaga unit disemak dan pengeringan model matematik 
              GBR telah ditubuhkan. Keputusan menunjukkan apabila suhu meningkat 
              dan kelajuan angin bertambah, kadar pengeringan meningkat dengan 
              sewajarnya. Apabila suhu melebihi 95°C, kelajuan angin melebihi 
              3.6 m/s; kadar pengeringan tidak akan berubah secara terancang. 
              Apabila suhu pengeringan itu meningkat, kadar perubahan pada peringkat 
              pra-pemanasan pengeringan dan peringkat nyahpecutan meningkat secara 
              mendadak, sedangkan kadar pengeringan pada peringkat pengeringan 
              laju meningkat dan masa pengeringan telah banyak dipendekkan. Penggunaan 
              tenaga unit menurun dengan peningkatan suhu dan meningkat dengan 
              kelajuan angin. Tambahan pula, apabila suhu pengeringan berada dalam 
              lingkungan 50°C hingga 
              80°C, penggunaan tenaga unit juga turut berubah; apabila suhu sederhana 
              adalah antara 80°C dan 110°C, penggunaan haba unit bertukar menjadi 
              perlahan. Model Wang dan Singh adalah stimulasi terbaik bagi proses 
              pengeringan GBR dalam 
              tetapan uji kaji. Apabila perbandingan RMSE dijalankan pada pelbagai 
              keadaan pengeringan, data bagi model Wang dan Singh adalah antara 
              1.6%-2.8% dan 2.5 × 10-4-5 × 10-4. Nilai model R2 ini lebih tinggi daripada 0.98. Kata 
              kunci: Ciri pengeringan; kandungan lembapan; model matematik; penggunaan 
              tenaga; percambahan beras perang RUJUKAN Argo, B.D., Sandra, S. & Ubaidillah, U. 2018. Mathematical modeling 
              on the thin layer drying kinetics of cassava chips in a multipurpose 
              convective-type tray dryer heated by a gas burner. Journal of 
              Mechanical Science and Technology 32(7): 3427-3435.  Aykin-Dincer, E. & Erbas, M. 2018. Drying kinetics, adsorption 
              isotherms and quality characteristics of vacuum-dried beef slices 
              with different salt contents. Meat Sci. 145: 114-120.  Bordiga, M., Gomez-Alonso, S., Locatelli, M., Travaglia, F., Coïsson, 
              J.D., Hermosin-Gutierrez, I. & Arlorio, M. 2014. Phenolics characterization 
              and antioxidant activity of six different pigmented Oryza sativa 
              L. cultivars grown in Piedmont (Italy). Food Res. Int. 65: 
              282-290.  Cáceres, P.J., Peñas, E., Martinez-Villaluenga, C., Amigo, L. & 
              Frias, J. 2017. Enhancement of biologically active compounds in 
              germinated brown rice and the effect of sun-drying. J. Cereal 
              Sci. 73: 1-9.  Caceres, P.J., Martinez-Villaluenga, C., Amigo, L. & Frias, J. 
              2014. Assessment on proximate composition, dietary fiber, phytic 
              acid and protein hydrolysis of germinated Ecuatorian brown rice. 
              Plant Foods Hum. Nutr. 69(3): 261-267.  Canabarro, N.I., Mazutti, M.A. & Carmo Ferreira, M. 2019. Drying 
              of olive (Olea europaea L.) leaves on a conveyor belt for 
              supercritical extraction of bioactive compounds: Mathematical modeling 
              of drying/extraction operations and analysis of extracts. Industrial 
              Crops and Products 136: 140-151.  Chandra Mohan, V.P. & Talukdar, P. 2010. Three dimensional numerical modeling of simultaneous 
              heat and moisture transfer in a moist object subjected to convective 
              drying. International Journal of Heat and Mass Transfer 53(21): 4638-4650. Chungcharoen Hatchapol, Prachayawarakorn Somkiat, Tungtrakul Patcharee 
              & Soponronnarit Somchart. 2014. Effects of germination process 
              and drying temperature on gamma-aminobutyric acid (GABA) and starch 
              digestibility of germinated brown rice. Dry. Technol. 32(6): 
              742-753.  El Khadraoui, A., Hamdi, I., Kooli, S. & Guizani, A. 2019. Drying 
              of red pepper slices in a solar greenhouse dryer and under open 
              sun: Experimental and mathematical investigations. Innov. Food 
              Sci. Emerg. Technol. 52: 262-270.  Hao, C.L., Lin, H.L., Ke, L.Y., Yen, H.W. & Shen, K.P. 2019. 
              Pre-germinated brown rice extract ameliorates high-fat diet-induced 
              metabolic syndrome. J. Food Biochem. 43(3): e12769.  Idlimam, A., Lamharrar, A., Bougayr, E.H., Kouhila, M. & Lakhal, 
              E.K. 2016. Solar convective drying in thin layers and modeling of 
              municipal waste at three temperatures. Appl. Therm. Eng. 108(9): 
              41-47.  Jian, F. & Jayas, D.S. 2018. Characterization of isotherms and 
              thin-layer drying of red kidney beans, Part I: Choosing appropriate 
              empirical and semitheoretical models. Dry. Technol. 36(14): 
              1696-1706.  Lakshmi, D.V.N., Muthukumar, P., Layek, A. & Nayak, P.K. 2018. 
              Drying kinetics and quality analysis of black turmeric (Curcuma 
              caesia) drying in a mixed mode forced convection solar dryer 
              integrated with thermal energy storage. Renew. Energy 120: 
              23-34.  Lee, J.H. & Zuo, L. 2013. Mathematical modeling on vacuum drying 
              of Zizyphus jujuba Miller slices. J. Food Sci. Technol. 
              50(1): 115-121.  Lee, Y.T., Shim, M.J., Goh, H.K., Mok, C. & Puligundla, P. 2019. 
              Effect of jet milling on the physicochemical properties, pasting 
              properties, and in vitro starch digestibility of germinated 
              brown rice flour. Food Chem. 282: 164-168.  Leite, L.d.S., Matsumoto, T. & Albertin, L.L. 2018. Mathematical 
              modeling of thermal drying of facultative pond sludge. J. Environ. 
              Eng. 144(9): 04018079.  Li, K., Hu, G., Yu, S., Tang, Q. & Liu, J. 2018. Effect of the 
              iron biofortification on enzymes activities and antioxidant properties 
              in germinated brown rice. J. Food Meas. Charact. 12(2): 789-799. 
               Li, Y., Su, X., Shi, F., Wang, L. & Chen, Z. 2017. High-temperature 
              air-fluidization-induced changes in the starch texture, rheological 
              properties, and digestibility of germinated brown rice. Starch 
              - Stärke 69(9-10): 1600328.  Liu, K., Zhao, S., Li, Y. & Chen, F. 2018. Analysis of volatiles 
              in brown rice, germinated brown rice, and selenised germinated brown 
              rice during storage at different vacuum levels. J. Sci. Food. 
              Agric. 98(6): 2295-2301.  Liu, X.C., Qin, N. & Luo, Y.K. 2016. Application of a combination 
              model based on an error-correcting technique to predict quality 
              changes of vacuum-packed bighead carp (Aristichthys nobilis) 
              fillets. LWT-Food Sci. Technol. 74: 514-520.  Mujaffar, S. & Sankat, C.K. 2015. Modeling the drying behavior 
              of unsalted and salted catfish (Arius sp.) Slabs. J. Food 
              Process. Preserv. 39(6): 1385-1398.  Ranmeechai, N. & Photchanachai, 
              S. 2017. Effect of modified atmosphere packaging on the quality 
              of germinated parboiled brown rice. Food Sci. Biotechnol. 26(2): 
              303-310. Sahin, 
              U. & Ozturk, H.K. 2016. Effects of pulsed vacuum osmotic dehydration 
              (PVOD) on drying kinetics of figs (Ficus carica L). Innov. 
              Food Sci. Emerg. Technol. 36: 104-111.  Shen, 
              L., Zhu, Y., Wang, L., Liu, C., Liu, C. & Zheng, X. 2019 Improvement 
              of cooking quality of germinated brown rice attributed to the fissures 
              caused by microwave drying. J.Food Sci. Technol. 56: 2737-2749. 
               Vijayan, 
              S., Arjunan, T.V. & Kumar, A. 2016. Mathematical modeling and 
              performance analysis of thin layer drying of bitter gourd in sensible 
              storage based indirect solar dryer. Innovative Food Science and 
              Emerging Technologies 36: 59-67.  Yodpitak 
              Sittidet, Sugunya Mahatheeranont, Dheerawan Boonyawan, Phumon Sookwong, 
              Sittiruk Roytrakul & Orranuch Norkaew. 2019. Cold plasma treatment 
              to improve germination and enhance the bioactive phytochemical content 
              of germinated brown rice. Food Chemistry 289: 328-339.  Yousaf, 
              K., Abbas, A., Zhang, X., Soomro, S.A., Ameen, M. & Chen, K. 
              2018. Effect of multi-stage drying on energy consumption, the rate 
              of drying, rice quality and its optimization during parboiling process. 
              Fresenius Environmental Bulletin 27: 8270-8279.    *Pengarang untuk surat-menyurat; email: kunjiechen@njau.edu.cn  
                  
                  
       |