Sains Malaysiana 48(10)(2019): 2093–2101
http://dx.doi.org/10.17576/jsm-2019-4810-04
Experimental Study of Drying Characteristics
and Mathematical Modeling for Air Drying of Germinated Brown Rice
(Kajian Eksperimen Ciri Pengeringan dan Model
Matematik untuk Pengeringan Udara Beras Perang)
ZHENWEI YU,
KHURRAM
YOUSAF,
YU
WANG
& KUNJIE CHEN*
Department of Agricultural Engineering,
College of Engineering, Nanjing Agricultural University, Nanjing,
Jiangsu 210031, P.R. China
Diserahkan: 3 Jun 2019/Diterima: 21
Ogos 2019
ABSTRACT
In view
of existing problems in the drying process of germinated brown rice
(GBR),
the self-made hot air drying test system was utilized. The drying
medium temperature and wind speed were selected as the drying parameters,
and different constraints were set for the test. The effects of
the drying medium temperature and wind speed on the drying rate
and unit energy consumption were examined, and the drying mathematical
models of GBR were
established. The results perceived that as the temperature rose,
and the wind speed increased, the drying rate increased accordingly.
When the temperature was above 95°C, wind speed exceeded 3.6 m/s; the drying rate would not change
deliberately. When the temperature of the drying medium rose, the
change rate during the drying preheating stage and the deceleration
stage increased sharply, whereas the drying rate in the constant-speed
drying stage increased, and the drying time was greatly shortened.
Unit energy consumption decreased with the increase of temperature
and increased with increasing wind speed. Furthermore, when the
drying temperature was ranged between 50°C and 80°C, the unit energy
consumption changed meaningfully; when the medium temperature was
between 80°C and 110°C, the unit heat consumption turned slowly.
Wang and Singh’s model could best simulate the drying process of
GBR within
the experimental settings. And then comparing the RMSE and
under the various dry conditions, the data of Wang and Singh model
were between 1.6% - 2.8% and 2.5×10-4 - 5×10-4. The R2 values of the model were higher
than 0.98.
Keywords:
Drying characteristics; energy consumption; germinated brown rice;
mathematical model; moisture content
ABSTRAK
Disebabkan
masalah sedia ada dalam proses pengeringan percambahan beras perang
(GBR),
sistem ujian pengeringan udara panas buatan sendiri telah digunakan.
Pengeringan suhu sederhana dan kelajuan angin dipilih sebagai parameter
pengeringan dan kekangan berbeza ditetapkan untuk ujian. Kesan daripada
pengeringan suhu sederhana dan kelajuan angin pada kadar pengeringan
dan penggunaan tenaga unit disemak dan pengeringan model matematik
GBR telah ditubuhkan. Keputusan menunjukkan apabila suhu meningkat
dan kelajuan angin bertambah, kadar pengeringan meningkat dengan
sewajarnya. Apabila suhu melebihi 95°C, kelajuan angin melebihi
3.6 m/s; kadar pengeringan tidak akan berubah secara terancang.
Apabila suhu pengeringan itu meningkat, kadar perubahan pada peringkat
pra-pemanasan pengeringan dan peringkat nyahpecutan meningkat secara
mendadak, sedangkan kadar pengeringan pada peringkat pengeringan
laju meningkat dan masa pengeringan telah banyak dipendekkan. Penggunaan
tenaga unit menurun dengan peningkatan suhu dan meningkat dengan
kelajuan angin. Tambahan pula, apabila suhu pengeringan berada dalam
lingkungan 50°C hingga
80°C, penggunaan tenaga unit juga turut berubah; apabila suhu sederhana
adalah antara 80°C dan 110°C, penggunaan haba unit bertukar menjadi
perlahan. Model Wang dan Singh adalah stimulasi terbaik bagi proses
pengeringan GBR dalam
tetapan uji kaji. Apabila perbandingan RMSE dijalankan pada pelbagai
keadaan pengeringan, data bagi model Wang dan Singh adalah antara
1.6%-2.8% dan 2.5 × 10-4-5 × 10-4. Nilai model R2 ini lebih tinggi daripada 0.98.
Kata
kunci: Ciri pengeringan; kandungan lembapan; model matematik; penggunaan
tenaga; percambahan beras perang
RUJUKAN
Argo, B.D., Sandra, S. & Ubaidillah, U. 2018. Mathematical modeling
on the thin layer drying kinetics of cassava chips in a multipurpose
convective-type tray dryer heated by a gas burner. Journal of
Mechanical Science and Technology 32(7): 3427-3435.
Aykin-Dincer, E. & Erbas, M. 2018. Drying kinetics, adsorption
isotherms and quality characteristics of vacuum-dried beef slices
with different salt contents. Meat Sci. 145: 114-120.
Bordiga, M., Gomez-Alonso, S., Locatelli, M., Travaglia, F., Coïsson,
J.D., Hermosin-Gutierrez, I. & Arlorio, M. 2014. Phenolics characterization
and antioxidant activity of six different pigmented Oryza sativa
L. cultivars grown in Piedmont (Italy). Food Res. Int. 65:
282-290.
Cáceres, P.J., Peñas, E., Martinez-Villaluenga, C., Amigo, L. &
Frias, J. 2017. Enhancement of biologically active compounds in
germinated brown rice and the effect of sun-drying. J. Cereal
Sci. 73: 1-9.
Caceres, P.J., Martinez-Villaluenga, C., Amigo, L. & Frias, J.
2014. Assessment on proximate composition, dietary fiber, phytic
acid and protein hydrolysis of germinated Ecuatorian brown rice.
Plant Foods Hum. Nutr. 69(3): 261-267.
Canabarro, N.I., Mazutti, M.A. & Carmo Ferreira, M. 2019. Drying
of olive (Olea europaea L.) leaves on a conveyor belt for
supercritical extraction of bioactive compounds: Mathematical modeling
of drying/extraction operations and analysis of extracts. Industrial
Crops and Products 136: 140-151.
Chandra Mohan, V.P. & Talukdar, P. 2010. Three dimensional numerical modeling of simultaneous
heat and moisture transfer in a moist object subjected to convective
drying. International Journal of Heat and Mass Transfer 53(21): 4638-4650.
Chungcharoen Hatchapol, Prachayawarakorn Somkiat, Tungtrakul Patcharee
& Soponronnarit Somchart. 2014. Effects of germination process
and drying temperature on gamma-aminobutyric acid (GABA) and starch
digestibility of germinated brown rice. Dry. Technol. 32(6):
742-753.
El Khadraoui, A., Hamdi, I., Kooli, S. & Guizani, A. 2019. Drying
of red pepper slices in a solar greenhouse dryer and under open
sun: Experimental and mathematical investigations. Innov. Food
Sci. Emerg. Technol. 52: 262-270.
Hao, C.L., Lin, H.L., Ke, L.Y., Yen, H.W. & Shen, K.P. 2019.
Pre-germinated brown rice extract ameliorates high-fat diet-induced
metabolic syndrome. J. Food Biochem. 43(3): e12769.
Idlimam, A., Lamharrar, A., Bougayr, E.H., Kouhila, M. & Lakhal,
E.K. 2016. Solar convective drying in thin layers and modeling of
municipal waste at three temperatures. Appl. Therm. Eng. 108(9):
41-47.
Jian, F. & Jayas, D.S. 2018. Characterization of isotherms and
thin-layer drying of red kidney beans, Part I: Choosing appropriate
empirical and semitheoretical models. Dry. Technol. 36(14):
1696-1706.
Lakshmi, D.V.N., Muthukumar, P., Layek, A. & Nayak, P.K. 2018.
Drying kinetics and quality analysis of black turmeric (Curcuma
caesia) drying in a mixed mode forced convection solar dryer
integrated with thermal energy storage. Renew. Energy 120:
23-34.
Lee, J.H. & Zuo, L. 2013. Mathematical modeling on vacuum drying
of Zizyphus jujuba Miller slices. J. Food Sci. Technol.
50(1): 115-121.
Lee, Y.T., Shim, M.J., Goh, H.K., Mok, C. & Puligundla, P. 2019.
Effect of jet milling on the physicochemical properties, pasting
properties, and in vitro starch digestibility of germinated
brown rice flour. Food Chem. 282: 164-168.
Leite, L.d.S., Matsumoto, T. & Albertin, L.L. 2018. Mathematical
modeling of thermal drying of facultative pond sludge. J. Environ.
Eng. 144(9): 04018079.
Li, K., Hu, G., Yu, S., Tang, Q. & Liu, J. 2018. Effect of the
iron biofortification on enzymes activities and antioxidant properties
in germinated brown rice. J. Food Meas. Charact. 12(2): 789-799.
Li, Y., Su, X., Shi, F., Wang, L. & Chen, Z. 2017. High-temperature
air-fluidization-induced changes in the starch texture, rheological
properties, and digestibility of germinated brown rice. Starch
- Stärke 69(9-10): 1600328.
Liu, K., Zhao, S., Li, Y. & Chen, F. 2018. Analysis of volatiles
in brown rice, germinated brown rice, and selenised germinated brown
rice during storage at different vacuum levels. J. Sci. Food.
Agric. 98(6): 2295-2301.
Liu, X.C., Qin, N. & Luo, Y.K. 2016. Application of a combination
model based on an error-correcting technique to predict quality
changes of vacuum-packed bighead carp (Aristichthys nobilis)
fillets. LWT-Food Sci. Technol. 74: 514-520.
Mujaffar, S. & Sankat, C.K. 2015. Modeling the drying behavior
of unsalted and salted catfish (Arius sp.) Slabs. J. Food
Process. Preserv. 39(6): 1385-1398.
Ranmeechai, N. & Photchanachai,
S. 2017. Effect of modified atmosphere packaging on the quality
of germinated parboiled brown rice. Food Sci. Biotechnol. 26(2):
303-310.
Sahin,
U. & Ozturk, H.K. 2016. Effects of pulsed vacuum osmotic dehydration
(PVOD) on drying kinetics of figs (Ficus carica L). Innov.
Food Sci. Emerg. Technol. 36: 104-111.
Shen,
L., Zhu, Y., Wang, L., Liu, C., Liu, C. & Zheng, X. 2019 Improvement
of cooking quality of germinated brown rice attributed to the fissures
caused by microwave drying. J.Food Sci. Technol. 56: 2737-2749.
Vijayan,
S., Arjunan, T.V. & Kumar, A. 2016. Mathematical modeling and
performance analysis of thin layer drying of bitter gourd in sensible
storage based indirect solar dryer. Innovative Food Science and
Emerging Technologies 36: 59-67.
Yodpitak
Sittidet, Sugunya Mahatheeranont, Dheerawan Boonyawan, Phumon Sookwong,
Sittiruk Roytrakul & Orranuch Norkaew. 2019. Cold plasma treatment
to improve germination and enhance the bioactive phytochemical content
of germinated brown rice. Food Chemistry 289: 328-339.
Yousaf,
K., Abbas, A., Zhang, X., Soomro, S.A., Ameen, M. & Chen, K.
2018. Effect of multi-stage drying on energy consumption, the rate
of drying, rice quality and its optimization during parboiling process.
Fresenius Environmental Bulletin 27: 8270-8279.
*Pengarang untuk surat-menyurat; email: kunjiechen@njau.edu.cn
|