Sains Malaysiana 48(10)(2019): 2143–2149

http://dx.doi.org/10.17576/jsm-2019-4810-09

 

Evaluation of Water Quality Parameters, Growth and Proximate Composition of Juvenile Crab, Portunus pelagicus Cultured in RAS and Non RAS System

(Penilaian Parameter Kualiti Air, Tumbesaran dan Komposisi Terhampir Ketam Juvenil Portunus pelagicus yang Dikultur dalam Sistem RAS dan Bukan RAS)

 

S.M. SHOYAIB. KOHINOOR, AZIZ ARSHAD, S.M. NURUL AMIN*, MOHD SALLEH KAMARUDIN & MUHAMMAD ALIYU SULAIMAN

 

Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 14 Oktober 2018/Diterima: 13 September 2019

 

ABSTRACT

Juvenile blue swimming crab, Portunus pelagicus were reared over 31 days in two different systems namely recirculating aquaculture system (RAS) and conventional aquaculture system (CAS) to evaluate the water quality parameters, growth, and its body composition. The juvenile crab, weighing of 0.95 ± 0.18 g and stocking was at 40 crabs m-2 and fed twice per day with a commercial shrimp pellet. During the experimental time, significantly (P <0.05) increment in dissolved oxygen (DO) (6.42 ± 0.13), low level of ammonia- nitrogen (0.04 ± 0.10) and nitrite-nitrogen (0.02 ± 0.07) were recorded in RAS than conventional aquaculture system (CAS) (DO: 5.99 ± 0.24; ammonia- nitrogen: 3.83 ± 1.59; nitrite-nitrogen: 0.71 ± 0.58). The carapace width, weight gain and specific growth rate (SGR) were significantly (P <0.05) higher in RAS. Protein content (22.65 ± 0.11 %) in crab also were significantly (P <0.05) higher in RAS compared with crab protein (21.41 ± 0.12 %) cultured in CAS. Although the survival rate was slightly higher in the juveniles reared at CAS, however it was not significantly different comparing with the individuals reared at RAS. The results strongly suggested that the use of RAS may improve the growth performance and maintain the better water quality for the crabs in captivity.

Keywords: Conventional aquaculture system (CAS); growth; Portunus pelagicus; recirculating aquaculture system (RAS); survival

 

ABSTRAK

Ketam juvenil renang biru, Portunus pelagicus telah dipelihara selama 31 hari dalam dua sistem berbeza iaitu sistem akuakultur udara berulang (RAS) dan sistem akuakultur konvensional (CAS) untuk menilai parameter kualiti air, tumbesaran dan komposisi badan. Ketam juvenil seberat 0.95 ± 0.18 g dan penstokan adalah pada 40 ketam m-2 dan diberi makan dua kali sehari dengan pelet udang komersial. Semasa masa uji kaji percubaan, peningkatan (P < 0.05) dengan ketara oksigen terlarut (DO) (6.42 ± 0.13), tahap rendah ammonia- nitrogen (0.04 ± 0.10) dan nitrit-nitrogen (0.02 ± 0.07) direkodkan dalam RAS daripada konvensional sistem akuakultur (CAS) (DO: 5.99 ± 0.24; ammonia-nitrogen: 3.83 ± 1.59; nitrit-nitrogen: 0.71 ± 0.58). Lebar karapas, pertambahan berat dan kadar pertumbuhan khusus (SGR) adalah ketara (P < 0.05) lebih tinggi dalam RAS. Kandungan protein (22.65 ± 0.11%) pada ketam juga adalah ketara (P < 0.05) lebih tinggi pada RAS berbanding dengan protein ketam (21.41 ± 0.12%) yang dikultur dalam CAS. Walaupun kadar kemandirian adalah lebih tinggi dalam juvenil yang dipelihara dalam CAS, walau bagaimanapun, ia tidak berbeza dengan ketara berbanding dengan individu yang dipelihara dalam RAS. Keputusan menyarankan bahawa penggunaan RAS boleh meningkatkan prestasi tumbesaran dan mengekalkan kualiti air yang lebih baik untuk ketam dalam kurungan.

Kata kunci: Kemandirian; pertumbuhan; Portunus pelagicus; sistem akuakultur konvensional (CAS); sistem akuakultur udara berulang (RAS)

RUJUKAN

Association of Official Analytical Chemists (AOAC). 1997. In Official Methods of Analysis of AOAC International. 16th ed., edited by Cunniff, P.A. Arlington, Virginia: AOAC International. Association of Official Agricultural Chemists.

Badiola, M., Mendiola, D. & Bostock, J. 2012. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering 51: 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004.

Barrento, S., Marques, A., Teixeira, B., Mendes, R., Bandarra, N., Vaz-Pires, P. & Nunes, M. L. 2010. Chemical composition, cholesterol, fatty acid and amino acid in two populations of brown crab Cancer pagurus: Ecological and human health implications. Journal of Food Composition and Analysis 23(7): 716-725.

Buentello, J.A., Gatlin, D.M. & Neill, W.H. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture 182: 339-352.

Carrillo-Dominguez, S., Carranco-Jauregui, M.E., Castillo- Dominguez, R.M., Castro-Gonzalez, M.I., Avila-Gonzalez, E. & Perez-Gil, F. 2005. Cholesterol and n-3 and n-6 fatty acid content in eggs from laying hens fed with red crab meal (Pleuroncodes planipes). Poultry Science 84(1): 167-172.

Catacutan, M.R. 2002. Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture 208(1- 2): 113-123. https://doi.org/10.1016/S0044-8486(01)00709- 8.

Celada, J.D., Carral, J.M., Gaudioso, V.R., Temińo, C. & Fernández, R. 1989. Response of juvenile freshwater crayfish (Pacifastacus leniusculus Dana) to several fresh and artificially compounded diets. Aquaculture 76(1-2): 67-78.

Çelik, M., Türeli, C., Çelik, M., Yanar, Y., Erdem, Ü. & Küçükgülmez, A. 2004. Fatty acid composition of the blue crab (Callinectes sapidus Rathbun, 1896) in the north eastern Mediterranean. Food Chemistry 88(2): 271-273.

Chen, D.W., Zhang, M. & Shrestha, S. 2007. Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chemistry 103(4): 1343-1349.

CMFRI, K. 2015. CMFRI Annual Report 2014-2015.

Davis, D.A. & Arnold, C.R. 1998. The design, management and production of a recirculating raceway system for the production of marine shrimp. Aquacultural Engineering 17(3): 193-211.

Fantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E. & Fogel, M.L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120(3): 416-426.

Farragut, R.N. 1965. Proximate composition of Chesapeake Bay blue crab (Callinectes sapidus). Journal of Food Science 30(3): 538-544.

Gokoolu, N. & Yerlikaya, P. 2003. Determinaton of proximate composition and mineral contents of blue crab (Callinectes sapidus) and swim crab (Portunus pelagicus) caught off the Gulf of Antalya. Food Chemistry 80(4): 495-498.

Ikhwanuddin, M., Talpur, A.D., Azra, M.N., Azlie, B.M., Hii, Y.H. & Abol-Munafi, A.B. 2012. Effects of stocking density on the survival, growth and development rate of early stages blue swimming crab, Portunus pelagicus (Linnaeus, 1758) larvae. World Applied Sciences Journal 18(3): 379-384.

Kevrekidis, K. & Kevrekidis, T. 1996. Effects of substrate on growth and survival of postlarvae and juveniles of Penaeus japonicus bate (Crustacea, Penaeidae). Oceanographic Literature Review 9(43): 913.

Konosu, S., Yamaguchi, K. & Hayashi, T. 1978. Studies on flavor components in boiled crabs, 1: Amino acids and related compounds in the extracts. Bulletin of the Japanese Society of Scientific Fisheries 44: 505-510.

Latyshev, N.A., Kasyanov, S.P., Kharlamenko, V.I. & Svetashev, V.I. 2009. Lipids and of fatty acids of edible crabs of the north-western Pacific. Food Chemistry 116(3): 657-661.

Lee, P.G. 1995. Nutrition of cephalopods: Fueling the system. Marine and Freshwater Behaviour and Physiology 25(1-3): 35-51.

Li, X.L., Li, G., Zhang, S.Y. & Tao, L. 2013. Effect of recirculating aquaculture system (RAS) on growth performance, body composition and hematological indicators of allogynogenetic crucian carp (Carassius auratus gibelio). Advance Journal of Food Science and Technology 5(3): 348-355.

Lui, C.W. & O’Connor, J.D. 1977. Biosynthesis of crustacean lipovitellin. III. The incorporation of labeled amino acids into the purified lipovitellin of the crab Pachygrapsus crassipes. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 199(1): 105-108.

Maheswarudu, G., Jose, J., Nair, K.R.M., Arputharaj, M.R., Ramakrishna, A., Vairamani, A. & Ramamoorthy, N. 2008. Evaluation of the seed production and grow out culture of blue swimming crab Portunus pelagicus (Linnaeus, 1758) in India. Indian Journal of Marine Sciences 37(3): 313-321.

Marques, A., Teixeira, B., Barrento, S., Anacleto, P., Carvalho, M.L. & Nunes, M.L. 2010. Chemical composition of Atlantic spider crab Maja brachydactyla: Human health implications. Journal of Food Composition and Analysis 23(3): 230-237.

Minagawa, M. 1994. Effects of photoperiod on survival, feeding and development of larvae of the red frog crab, Ranina ranina. Aquaculture 120(1-2): 105-114.

Nicula, M., Szelei, Z., Pacala, N., Bura, M., Simiz, E., Hotea, M. & Marcu, A. 2015. Assessement of growth performances of juvenile sterlet Acipenser ruthenus raised in a Recirculating Aquaculture System (RAS). Scientific Papers: Animal Science and Biotechnologies 48(2): 108-114.

Oniam, V., Taparhudee, W., Tunkijjanukij, S. & Musig, Y. 2011. Mortality rate of blue swimming crab (Portunus pelagicus) caused by cannibalism. Kasetsart University Fisheries Research Bulletin 35(2): 1-13.

Piedrahita, R.H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226: 35-44.

Pinheiro, M.A.A. & Fransozo, A. 1993. Relative growth of the speckled swimming crab Arenaeus cribrarius (Lamarck, 1818)(Brachyura, Portunidae), near Ubatuba, state of Săo Paulo, Brazil. Crustaceana 65(3): 377-389.

Pinheiro, M.A.A. & Hattori, G.Y. 2006. Growth of the speckled swimming crab, Arenaeus cribrarius (Lamarck, 1818) (Crustacea, Brachyura, Portunidae), in Ubatuba (SP), Brazil. Journal of Natural History 40(21-22): 1331-1341.

Promya, J. & Chitmanat, C. 2011. The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African sharptooth catfish (Clarias gariepinus). Int. J. Agric. Biol. 13(1): 77-82.

Romano, N. & Zeng, C. 2006. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture 260: 151-162.

Seemann, U.B., Lorkowski, K., Slater, M.J., Buchholz, F. & Buck, B.H. 2015. Growth performance of Noble Crayfish Astacus astacus in recirculating aquaculture systems. Aquaculture International 23(4): 997-1012.

Sheen, S.S. 2000. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture 189(3-4): 277-285.

Sheen, S.S. & Wu, S.W. 1999. The effects of dietary lipid levels on the growth response of juvenile mud crab Scylla serrata. Aquaculture 175(1): 143-153.

Siddiquie, P.J.A., Akbar, Z. & Qasim, R. 1987. Biochemical composition and calorific values of the three edible species of protunid crabs from Karachi [Pakistan]. Pakistan Journal of Scientific and Industrial Research (Pakistan) 30(2): 119-121.

Takeuchi, T., Satoh, N., Sekiya, S., Shimizu, T. & Watanabe, T. 1999. The effect of dietary EPA and DHA on the molting rate of larval swimming crab Portunus trituberculatus. Nippon Suisan Gakkaishi 65(6): 998-1004.

Tal, Y., Schreier, H.J., Sowers, K.R., Stubblefield, J.D., Place, A.R. & Zohar, Y. 2009. Environmentally sustainable land-based marine aquaculture. Aquaculture 286: 28-35.

Talpur, A.D., Memon, A.J., Khan, M.I., Ikhwanuddin, M., Daniel, M.M.D. & Abol-Munafi, A.B. 2011. A novel of gut pathogenic bacteria of blue swimming crab Portunus pelagicus (Linneaus, 1758) and pathogenicity of Vibrio harveyi a transmission agent in larval culture under hatchery conditions. Res. J. Appl. Sci. 6: 116-127.

Tina, F.W. & Darumas, U. 2014. Feed acceptability, survival and growth performance of blue swimming crab (Portunus pelagicus L.) fed with different cheaper diets. Multi- Disciplinary Edu Global Quest (Quarterly) 3(1#9): 31-43.

Van Rijn, J. 1996. The potential for integrated biological treatment systems in recirculating fish culture a review. Aquaculture 139(3-4): 181-201.

Verdegem, M.C.J., Bosma, R.H. & Verreth, J.A.J. 2006. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22: 101-113.

Vilasoa-M, M., López-Hernández, J. & Lage-Yusty, M.A. 2007. Protein and amino acid contents in the crab, Chionoecetes opilio. Food Chemistry 103(4): 1330-1336.

Zohar, Y., Tal, Y., Schreier, H.J., Steven, C., Stubblefield, J. & Place, A. 2005. Commercially feasible urban recirculated aquaculture: Addressing the marine sector. In Urban Aquaculture, edited by Costa-Pierce, B. Cambridge: CABI Publishing. pp. 159-171.

 

*Pengarang untuk surat-menyurat; email: sm_nurul@upm.edu.my

 

 

 

 

sebelumnya