| Sains Malaysiana 48(10)(2019): 
              2143–2149  http://dx.doi.org/10.17576/jsm-2019-4810-09 
                 Evaluation of Water Quality Parameters, 
              Growth and Proximate Composition of Juvenile Crab, Portunus pelagicus Cultured 
              in RAS and Non RAS System (Penilaian Parameter 
              Kualiti Air, Tumbesaran 
              dan Komposisi 
              Terhampir Ketam Juvenil Portunus pelagicus yang Dikultur dalam Sistem RAS 
              dan Bukan 
              RAS)   S.M. SHOYAIB. 
              KOHINOOR, 
              AZIZ 
              ARSHAD, 
              S.M. 
              NURUL 
              AMIN*, MOHD SALLEH KAMARUDIN 
              & MUHAMMAD ALIYU SULAIMAN   Department of Aquaculture, Faculty 
              of Agriculture, Universiti Putra Malaysia, 
              43400 UPM Serdang, Selangor Darul Ehsan, Malaysia   Diserahkan: 14 Oktober 2018/Diterima: 13 September 
              2019   ABSTRACT Juvenile 
              blue swimming crab, Portunus pelagicus were reared 
              over 31 days in two different systems namely recirculating aquaculture 
              system (RAS) 
              and conventional aquaculture system (CAS) to evaluate the water quality 
              parameters, growth, and its body composition. The juvenile crab, 
              weighing of 0.95 ± 0.18 g and stocking was at 40 crabs m-2 and 
              fed twice per day with a commercial shrimp pellet. During the experimental 
              time, significantly (P <0.05) increment in dissolved oxygen (DO) 
              (6.42 ± 0.13), low level of ammonia- nitrogen (0.04 ± 0.10) and 
              nitrite-nitrogen (0.02 ± 0.07) were recorded in RAS than conventional aquaculture 
              system (CAS) (DO: 
              5.99 ± 0.24; ammonia- nitrogen: 3.83 ± 1.59; nitrite-nitrogen: 0.71 
              ± 0.58). The carapace width, weight gain and specific growth rate 
              (SGR) 
              were significantly (P <0.05) higher in RAS. Protein content (22.65 
              ± 0.11 %) in crab also were significantly (P <0.05) higher in 
              RAS compared 
              with crab protein (21.41 ± 0.12 %) cultured in CAS. 
              Although the survival rate was slightly higher in the juveniles 
              reared at CAS, 
              however it was not significantly different comparing with the individuals 
              reared at RAS. The results strongly suggested that the use of RAS 
              may improve the growth performance and maintain the 
              better water quality for the crabs in captivity. Keywords: 
              Conventional aquaculture system (CAS); growth; Portunus pelagicus; recirculating 
              aquaculture system (RAS); survival   ABSTRAK Ketam juvenil 
              renang biru, 
              Portunus pelagicus telah dipelihara selama 31 hari dalam dua sistem 
              berbeza iaitu 
              sistem akuakultur udara berulang (RAS) 
              dan sistem akuakultur 
              konvensional (CAS) untuk 
              menilai parameter kualiti 
              air, tumbesaran dan 
              komposisi badan. Ketam juvenil seberat 
              0.95 ± 0.18 g dan penstokan 
              adalah pada 
              40 ketam m-2 dan diberi makan dua 
              kali sehari dengan 
              pelet udang komersial. 
              Semasa masa uji 
              kaji percubaan, peningkatan (P < 0.05) dengan 
              ketara oksigen terlarut (DO) (6.42 ± 0.13), tahap rendah ammonia- nitrogen (0.04 
              ± 0.10) dan nitrit-nitrogen 
              (0.02 ± 0.07) direkodkan dalam 
              RAS 
              daripada konvensional 
              sistem akuakultur 
              (CAS) 
              (DO: 
              5.99 ± 0.24; ammonia-nitrogen: 3.83 ± 1.59; nitrit-nitrogen: 
              0.71 ± 0.58). Lebar karapas, 
              pertambahan berat 
              dan kadar pertumbuhan 
              khusus (SGR) adalah 
              ketara (P < 0.05) lebih 
              tinggi dalam RAS. 
              Kandungan protein (22.65 ± 0.11%) pada 
              ketam juga adalah ketara (P < 0.05) lebih tinggi pada 
              RAS 
              berbanding dengan 
              protein ketam (21.41 ± 0.12%) yang dikultur dalam CAS. 
              Walaupun kadar kemandirian adalah lebih tinggi 
              dalam juvenil 
              yang dipelihara dalam CAS, 
              walau bagaimanapun, ia tidak berbeza 
              dengan ketara 
              berbanding dengan individu yang dipelihara dalam RAS. Keputusan 
              menyarankan bahawa 
              penggunaan RAS boleh 
              meningkatkan prestasi 
              tumbesaran dan mengekalkan kualiti air yang lebih baik untuk 
              ketam dalam 
              kurungan. Kata kunci: Kemandirian; pertumbuhan; Portunus pelagicus; sistem akuakultur 
              konvensional (CAS); sistem akuakultur 
              udara berulang (RAS) RUJUKAN Association of Official Analytical Chemists (AOAC). 1997. In Official 
              Methods of Analysis of AOAC International. 16th ed., edited 
              by Cunniff, P.A. Arlington, Virginia: AOAC International. Association 
              of Official Agricultural Chemists.  Badiola, M., 
              Mendiola, D. & Bostock, J. 2012. 
              Recirculating Aquaculture Systems (RAS) analysis: Main issues on 
              management and future challenges. Aquacultural 
              Engineering 51: 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004. 
               Barrento, S., 
              Marques, A., Teixeira, B., Mendes, R., Bandarra, 
              N., Vaz-Pires, P. & Nunes, M. L. 
              2010. Chemical composition, cholesterol, fatty acid and amino acid 
              in two populations of brown crab Cancer pagurus: 
              Ecological and human health implications. Journal of Food Composition 
              and Analysis 23(7): 716-725.  Buentello, J.A., 
              Gatlin, D.M. & Neill, W.H. 2000. Effects of water temperature 
              and dissolved oxygen on daily feed consumption, feed utilization 
              and growth of channel catfish (Ictalurus 
              punctatus). Aquaculture 182: 339-352.  Carrillo-Dominguez, S., Carranco-Jauregui, 
              M.E., Castillo- Dominguez, R.M., Castro-Gonzalez, M.I., Avila-Gonzalez, 
              E. & Perez-Gil, F. 2005. Cholesterol and n-3 and n-6 fatty acid 
              content in eggs from laying hens fed with red crab meal (Pleuroncodes 
              planipes). Poultry Science 84(1): 
              167-172.  Catacutan, M.R. 2002. Growth and body composition of juvenile mud crab, Scylla 
              serrata, fed different dietary protein 
              and lipid levels and protein to energy ratios. Aquaculture 208(1- 
              2): 113-123. https://doi.org/10.1016/S0044-8486(01)00709- 8. Celada, J.D., Carral, 
              J.M., Gaudioso, V.R., Temińo, 
              C. & Fernández, R. 1989. Response 
              of juvenile freshwater crayfish (Pacifastacus 
              leniusculus Dana) to several fresh and artificially compounded 
              diets. Aquaculture 76(1-2): 67-78.  Çelik, M., Türeli, 
              C., Çelik, M., Yanar, 
              Y., Erdem, Ü. & Küçükgülmez, A. 
              2004. Fatty acid composition of the blue crab (Callinectes 
              sapidus Rathbun, 
              1896) in the north eastern Mediterranean. Food Chemistry 88(2): 
              271-273.  Chen, 
              D.W., Zhang, M. & Shrestha, S. 2007. Compositional characteristics 
              and nutritional quality of Chinese mitten crab (Eriocheir 
              sinensis). Food Chemistry 103(4): 
              1343-1349.  CMFRI, 
              K. 2015. CMFRI Annual Report 2014-2015.  Davis, 
              D.A. & Arnold, C.R. 1998. The design, management and production 
              of a recirculating raceway system for the production of marine shrimp. 
              Aquacultural Engineering 17(3): 193-211.  Fantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E. & Fogel, M.L. 
              1999. A food web analysis of the juvenile blue crab, Callinectes 
              sapidus, using stable isotopes in 
              whole animals and individual amino acids. Oecologia 
              120(3): 416-426.  Farragut, 
              R.N. 1965. Proximate composition of Chesapeake Bay blue crab (Callinectes sapidus). 
              Journal of Food Science 30(3): 538-544.  Gokoolu, N. & Yerlikaya, P. 2003. Determinaton 
              of proximate composition and mineral contents of blue crab (Callinectes 
              sapidus) and swim crab (Portunus 
              pelagicus) caught off the Gulf of 
              Antalya. Food Chemistry 80(4): 495-498.  Ikhwanuddin, M., Talpur, A.D., Azra, M.N., Azlie, B.M., Hii, Y.H. & Abol-Munafi, A.B. 2012. Effects of stocking density on the 
              survival, growth and development rate of early stages blue swimming 
              crab, Portunus pelagicus (Linnaeus, 
              1758) larvae. World Applied Sciences Journal 18(3): 379-384. 
               Kevrekidis, K. & Kevrekidis, T. 1996. Effects of substrate on growth and survival 
              of postlarvae and juveniles of Penaeus japonicus bate (Crustacea, Penaeidae). 
              Oceanographic Literature Review 9(43): 913.  Konosu, S., Yamaguchi, 
              K. & Hayashi, T. 1978. Studies on flavor components in boiled 
              crabs, 1: Amino acids and related compounds in the extracts. Bulletin 
              of the Japanese Society of Scientific Fisheries 44: 505-510. 
               Latyshev, N.A., Kasyanov, 
              S.P., Kharlamenko, V.I. & Svetashev, 
              V.I. 2009. Lipids and of fatty acids of edible crabs of the north-western 
              Pacific. Food Chemistry 116(3): 657-661.  Lee, 
              P.G. 1995. Nutrition of cephalopods: Fueling the system. Marine 
              and Freshwater Behaviour and Physiology 
              25(1-3): 35-51.  Li, 
              X.L., Li, G., Zhang, S.Y. & Tao, L. 2013. Effect of recirculating 
              aquaculture system (RAS) on growth performance, body composition 
              and hematological indicators of allogynogenetic 
              crucian carp (Carassius 
              auratus gibelio). 
              Advance Journal of Food Science and Technology 5(3): 348-355. 
               Lui, C.W. & O’Connor, J.D. 1977. 
              Biosynthesis of crustacean lipovitellin. 
              III. The incorporation of labeled amino acids into the purified 
              lipovitellin of the crab Pachygrapsus 
              crassipes. Journal of Experimental Zoology Part A: 
              Ecological Genetics and Physiology 199(1): 105-108.  Maheswarudu, G., Jose, J., Nair, 
              K.R.M., Arputharaj, M.R., Ramakrishna, 
              A., Vairamani, A. & Ramamoorthy, 
              N. 2008. Evaluation of the seed production and grow out culture 
              of blue swimming crab Portunus 
              pelagicus (Linnaeus, 1758) in India. 
              Indian Journal of Marine Sciences 37(3): 313-321.  Marques, 
              A., Teixeira, B., Barrento, S., Anacleto, 
              P., Carvalho, M.L. & Nunes, 
              M.L. 2010. Chemical composition of Atlantic spider crab Maja 
              brachydactyla: Human health implications. Journal of 
              Food Composition and Analysis 23(3): 230-237.  Minagawa, M. 1994. Effects 
              of photoperiod on survival, feeding and development of larvae of 
              the red frog crab, Ranina ranina. 
              Aquaculture 120(1-2): 105-114.  Nicula, M., Szelei, Z., Pacala, N., Bura, M., Simiz, E., Hotea, M. & Marcu, A. 2015. 
              Assessement of growth performances of juvenile sterlet Acipenser ruthenus raised in a Recirculating Aquaculture System 
              (RAS). Scientific Papers: Animal Science and Biotechnologies 
              48(2): 108-114.  Oniam, V., Taparhudee, 
              W., Tunkijjanukij, S. & Musig, 
              Y. 2011. Mortality rate of blue swimming crab (Portunus 
              pelagicus) caused by cannibalism. 
              Kasetsart University Fisheries Research Bulletin 
              35(2): 1-13.  Piedrahita, R.H. 2003. Reducing 
              the potential environmental impact of tank aquaculture effluents 
              through intensification and recirculation. Aquaculture 226: 
              35-44.  Pinheiro, M.A.A. & Fransozo, A. 1993. Relative growth of the speckled swimming 
              crab Arenaeus cribrarius 
              (Lamarck, 1818)(Brachyura, 
              Portunidae), near Ubatuba, 
              state of Săo Paulo, Brazil. Crustaceana 
              65(3): 377-389.  Pinheiro, M.A.A. & Hattori, 
              G.Y. 2006. Growth of the speckled swimming crab, Arenaeus 
              cribrarius (Lamarck, 1818) (Crustacea, 
              Brachyura, Portunidae), 
              in Ubatuba (SP), Brazil. Journal of 
              Natural History 40(21-22): 1331-1341.  Promya, J. & Chitmanat, C. 2011. The effects of Spirulina platensis 
              and Cladophora algae on 
              the growth performance, meat quality and immunity stimulating capacity 
              of the African sharptooth catfish (Clarias 
              gariepinus). Int. J. Agric. Biol. 
              13(1): 77-82.  Romano, 
              N. & Zeng, C. 2006. The effects of salinity on the survival, 
              growth and haemolymph osmolality of early juvenile blue swimmer crabs, 
              Portunus pelagicus. 
              Aquaculture 260: 151-162.  Seemann, U.B., Lorkowski, K., Slater, M.J., Buchholz, F. & Buck, B.H. 
              2015. Growth performance of Noble Crayfish Astacus 
              astacus in recirculating aquaculture 
              systems. Aquaculture International 23(4): 997-1012.  Sheen, 
              S.S. 2000. Dietary cholesterol requirement of juvenile mud crab 
              Scylla serrata. Aquaculture 189(3-4): 277-285.  Sheen, 
              S.S. & Wu, S.W. 1999. The effects of dietary lipid levels on 
              the growth response of juvenile mud crab Scylla serrata. 
              Aquaculture 175(1): 143-153.  Siddiquie, P.J.A., Akbar, 
              Z. & Qasim, R. 1987. Biochemical composition 
              and calorific values of the three edible species of protunid 
              crabs from Karachi [Pakistan]. Pakistan Journal of Scientific 
              and Industrial Research (Pakistan) 30(2): 119-121.  Takeuchi, 
              T., Satoh, N., Sekiya, S., Shimizu, T. & Watanabe, T. 1999. 
              The effect of dietary EPA and DHA on the molting rate of larval 
              swimming crab Portunus trituberculatus. 
              Nippon Suisan Gakkaishi 65(6): 
              998-1004.  Tal, 
              Y., Schreier, H.J., Sowers, K.R., Stubblefield, 
              J.D., Place, A.R. & Zohar, Y. 2009. Environmentally sustainable 
              land-based marine aquaculture. Aquaculture 286: 28-35.  Talpur, A.D., Memon, 
              A.J., Khan, M.I., Ikhwanuddin, M., Daniel, 
              M.M.D. & Abol-Munafi, A.B. 2011. A 
              novel of gut pathogenic bacteria of blue swimming crab Portunus 
              pelagicus (Linneaus, 
              1758) and pathogenicity of Vibrio harveyi 
              a transmission agent in larval culture under hatchery conditions. 
              Res. J. Appl. Sci. 6: 116-127. Tina, F.W. & Darumas, U. 2014. Feed acceptability, survival and growth 
              performance of blue swimming crab (Portunus 
              pelagicus L.) fed with different cheaper diets. Multi- 
              Disciplinary Edu Global Quest (Quarterly) 3(1#9): 31-43.  Van Rijn, J. 1996. The potential for 
              integrated biological treatment systems in recirculating fish culture 
              a review. Aquaculture 139(3-4): 181-201.  Verdegem, M.C.J., Bosma, 
              R.H. & Verreth, J.A.J. 2006. Reducing 
              water use for animal production through aquaculture. Int. J. 
              Water Resour. Dev. 22: 101-113.  Vilasoa-M, M., López-Hernández, 
              J. & Lage-Yusty, M.A. 2007. Protein 
              and amino acid contents in the crab, Chionoecetes 
              opilio. Food Chemistry 103(4): 1330-1336.  Zohar, Y., Tal, Y., Schreier, H.J., Steven, C., Stubblefield, J. & Place, 
              A. 2005. Commercially feasible urban recirculated aquaculture: Addressing 
              the marine sector. In Urban Aquaculture, edited by Costa-Pierce, 
              B. Cambridge: CABI Publishing. pp. 159-171.    *Pengarang 
              untuk surat-menyurat; 
              email: sm_nurul@upm.edu.my  
                  
                  
       |