Sains Malaysiana 48(10)(2019):
2143–2149
http://dx.doi.org/10.17576/jsm-2019-4810-09
Evaluation of Water Quality Parameters,
Growth and Proximate Composition of Juvenile Crab, Portunus pelagicus Cultured
in RAS and Non RAS System
(Penilaian Parameter
Kualiti Air, Tumbesaran
dan Komposisi
Terhampir Ketam Juvenil Portunus pelagicus yang Dikultur dalam Sistem RAS
dan Bukan
RAS)
S.M. SHOYAIB.
KOHINOOR,
AZIZ
ARSHAD,
S.M.
NURUL
AMIN*, MOHD SALLEH KAMARUDIN
& MUHAMMAD ALIYU SULAIMAN
Department of Aquaculture, Faculty
of Agriculture, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 14 Oktober 2018/Diterima: 13 September
2019
ABSTRACT
Juvenile
blue swimming crab, Portunus pelagicus were reared
over 31 days in two different systems namely recirculating aquaculture
system (RAS)
and conventional aquaculture system (CAS) to evaluate the water quality
parameters, growth, and its body composition. The juvenile crab,
weighing of 0.95 ± 0.18 g and stocking was at 40 crabs m-2 and
fed twice per day with a commercial shrimp pellet. During the experimental
time, significantly (P <0.05) increment in dissolved oxygen (DO)
(6.42 ± 0.13), low level of ammonia- nitrogen (0.04 ± 0.10) and
nitrite-nitrogen (0.02 ± 0.07) were recorded in RAS than conventional aquaculture
system (CAS) (DO:
5.99 ± 0.24; ammonia- nitrogen: 3.83 ± 1.59; nitrite-nitrogen: 0.71
± 0.58). The carapace width, weight gain and specific growth rate
(SGR)
were significantly (P <0.05) higher in RAS. Protein content (22.65
± 0.11 %) in crab also were significantly (P <0.05) higher in
RAS compared
with crab protein (21.41 ± 0.12 %) cultured in CAS.
Although the survival rate was slightly higher in the juveniles
reared at CAS,
however it was not significantly different comparing with the individuals
reared at RAS. The results strongly suggested that the use of RAS
may improve the growth performance and maintain the
better water quality for the crabs in captivity.
Keywords:
Conventional aquaculture system (CAS); growth; Portunus pelagicus; recirculating
aquaculture system (RAS); survival
ABSTRAK
Ketam juvenil
renang biru,
Portunus pelagicus telah dipelihara selama 31 hari dalam dua sistem
berbeza iaitu
sistem akuakultur udara berulang (RAS)
dan sistem akuakultur
konvensional (CAS) untuk
menilai parameter kualiti
air, tumbesaran dan
komposisi badan. Ketam juvenil seberat
0.95 ± 0.18 g dan penstokan
adalah pada
40 ketam m-2 dan diberi makan dua
kali sehari dengan
pelet udang komersial.
Semasa masa uji
kaji percubaan, peningkatan (P < 0.05) dengan
ketara oksigen terlarut (DO) (6.42 ± 0.13), tahap rendah ammonia- nitrogen (0.04
± 0.10) dan nitrit-nitrogen
(0.02 ± 0.07) direkodkan dalam
RAS
daripada konvensional
sistem akuakultur
(CAS)
(DO:
5.99 ± 0.24; ammonia-nitrogen: 3.83 ± 1.59; nitrit-nitrogen:
0.71 ± 0.58). Lebar karapas,
pertambahan berat
dan kadar pertumbuhan
khusus (SGR) adalah
ketara (P < 0.05) lebih
tinggi dalam RAS.
Kandungan protein (22.65 ± 0.11%) pada
ketam juga adalah ketara (P < 0.05) lebih tinggi pada
RAS
berbanding dengan
protein ketam (21.41 ± 0.12%) yang dikultur dalam CAS.
Walaupun kadar kemandirian adalah lebih tinggi
dalam juvenil
yang dipelihara dalam CAS,
walau bagaimanapun, ia tidak berbeza
dengan ketara
berbanding dengan individu yang dipelihara dalam RAS. Keputusan
menyarankan bahawa
penggunaan RAS boleh
meningkatkan prestasi
tumbesaran dan mengekalkan kualiti air yang lebih baik untuk
ketam dalam
kurungan.
Kata kunci: Kemandirian; pertumbuhan; Portunus pelagicus; sistem akuakultur
konvensional (CAS); sistem akuakultur
udara berulang (RAS)
RUJUKAN
Association of Official Analytical Chemists (AOAC). 1997. In Official
Methods of Analysis of AOAC International. 16th ed., edited
by Cunniff, P.A. Arlington, Virginia: AOAC International. Association
of Official Agricultural Chemists.
Badiola, M.,
Mendiola, D. & Bostock, J. 2012.
Recirculating Aquaculture Systems (RAS) analysis: Main issues on
management and future challenges. Aquacultural
Engineering 51: 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004.
Barrento, S.,
Marques, A., Teixeira, B., Mendes, R., Bandarra,
N., Vaz-Pires, P. & Nunes, M. L.
2010. Chemical composition, cholesterol, fatty acid and amino acid
in two populations of brown crab Cancer pagurus:
Ecological and human health implications. Journal of Food Composition
and Analysis 23(7): 716-725.
Buentello, J.A.,
Gatlin, D.M. & Neill, W.H. 2000. Effects of water temperature
and dissolved oxygen on daily feed consumption, feed utilization
and growth of channel catfish (Ictalurus
punctatus). Aquaculture 182: 339-352.
Carrillo-Dominguez, S., Carranco-Jauregui,
M.E., Castillo- Dominguez, R.M., Castro-Gonzalez, M.I., Avila-Gonzalez,
E. & Perez-Gil, F. 2005. Cholesterol and n-3 and n-6 fatty acid
content in eggs from laying hens fed with red crab meal (Pleuroncodes
planipes). Poultry Science 84(1):
167-172.
Catacutan, M.R. 2002. Growth and body composition of juvenile mud crab, Scylla
serrata, fed different dietary protein
and lipid levels and protein to energy ratios. Aquaculture 208(1-
2): 113-123. https://doi.org/10.1016/S0044-8486(01)00709- 8.
Celada, J.D., Carral,
J.M., Gaudioso, V.R., Temińo,
C. & Fernández, R. 1989. Response
of juvenile freshwater crayfish (Pacifastacus
leniusculus Dana) to several fresh and artificially compounded
diets. Aquaculture 76(1-2): 67-78.
Çelik, M., Türeli,
C., Çelik, M., Yanar,
Y., Erdem, Ü. & Küçükgülmez, A.
2004. Fatty acid composition of the blue crab (Callinectes
sapidus Rathbun,
1896) in the north eastern Mediterranean. Food Chemistry 88(2):
271-273.
Chen,
D.W., Zhang, M. & Shrestha, S. 2007. Compositional characteristics
and nutritional quality of Chinese mitten crab (Eriocheir
sinensis). Food Chemistry 103(4):
1343-1349.
CMFRI,
K. 2015. CMFRI Annual Report 2014-2015.
Davis,
D.A. & Arnold, C.R. 1998. The design, management and production
of a recirculating raceway system for the production of marine shrimp.
Aquacultural Engineering 17(3): 193-211.
Fantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E. & Fogel, M.L.
1999. A food web analysis of the juvenile blue crab, Callinectes
sapidus, using stable isotopes in
whole animals and individual amino acids. Oecologia
120(3): 416-426.
Farragut,
R.N. 1965. Proximate composition of Chesapeake Bay blue crab (Callinectes sapidus).
Journal of Food Science 30(3): 538-544.
Gokoolu, N. & Yerlikaya, P. 2003. Determinaton
of proximate composition and mineral contents of blue crab (Callinectes
sapidus) and swim crab (Portunus
pelagicus) caught off the Gulf of
Antalya. Food Chemistry 80(4): 495-498.
Ikhwanuddin, M., Talpur, A.D., Azra, M.N., Azlie, B.M., Hii, Y.H. & Abol-Munafi, A.B. 2012. Effects of stocking density on the
survival, growth and development rate of early stages blue swimming
crab, Portunus pelagicus (Linnaeus,
1758) larvae. World Applied Sciences Journal 18(3): 379-384.
Kevrekidis, K. & Kevrekidis, T. 1996. Effects of substrate on growth and survival
of postlarvae and juveniles of Penaeus japonicus bate (Crustacea, Penaeidae).
Oceanographic Literature Review 9(43): 913.
Konosu, S., Yamaguchi,
K. & Hayashi, T. 1978. Studies on flavor components in boiled
crabs, 1: Amino acids and related compounds in the extracts. Bulletin
of the Japanese Society of Scientific Fisheries 44: 505-510.
Latyshev, N.A., Kasyanov,
S.P., Kharlamenko, V.I. & Svetashev,
V.I. 2009. Lipids and of fatty acids of edible crabs of the north-western
Pacific. Food Chemistry 116(3): 657-661.
Lee,
P.G. 1995. Nutrition of cephalopods: Fueling the system. Marine
and Freshwater Behaviour and Physiology
25(1-3): 35-51.
Li,
X.L., Li, G., Zhang, S.Y. & Tao, L. 2013. Effect of recirculating
aquaculture system (RAS) on growth performance, body composition
and hematological indicators of allogynogenetic
crucian carp (Carassius
auratus gibelio).
Advance Journal of Food Science and Technology 5(3): 348-355.
Lui, C.W. & O’Connor, J.D. 1977.
Biosynthesis of crustacean lipovitellin.
III. The incorporation of labeled amino acids into the purified
lipovitellin of the crab Pachygrapsus
crassipes. Journal of Experimental Zoology Part A:
Ecological Genetics and Physiology 199(1): 105-108.
Maheswarudu, G., Jose, J., Nair,
K.R.M., Arputharaj, M.R., Ramakrishna,
A., Vairamani, A. & Ramamoorthy,
N. 2008. Evaluation of the seed production and grow out culture
of blue swimming crab Portunus
pelagicus (Linnaeus, 1758) in India.
Indian Journal of Marine Sciences 37(3): 313-321.
Marques,
A., Teixeira, B., Barrento, S., Anacleto,
P., Carvalho, M.L. & Nunes,
M.L. 2010. Chemical composition of Atlantic spider crab Maja
brachydactyla: Human health implications. Journal of
Food Composition and Analysis 23(3): 230-237.
Minagawa, M. 1994. Effects
of photoperiod on survival, feeding and development of larvae of
the red frog crab, Ranina ranina.
Aquaculture 120(1-2): 105-114.
Nicula, M., Szelei, Z., Pacala, N., Bura, M., Simiz, E., Hotea, M. & Marcu, A. 2015.
Assessement of growth performances of juvenile sterlet Acipenser ruthenus raised in a Recirculating Aquaculture System
(RAS). Scientific Papers: Animal Science and Biotechnologies
48(2): 108-114.
Oniam, V., Taparhudee,
W., Tunkijjanukij, S. & Musig,
Y. 2011. Mortality rate of blue swimming crab (Portunus
pelagicus) caused by cannibalism.
Kasetsart University Fisheries Research Bulletin
35(2): 1-13.
Piedrahita, R.H. 2003. Reducing
the potential environmental impact of tank aquaculture effluents
through intensification and recirculation. Aquaculture 226:
35-44.
Pinheiro, M.A.A. & Fransozo, A. 1993. Relative growth of the speckled swimming
crab Arenaeus cribrarius
(Lamarck, 1818)(Brachyura,
Portunidae), near Ubatuba,
state of Săo Paulo, Brazil. Crustaceana
65(3): 377-389.
Pinheiro, M.A.A. & Hattori,
G.Y. 2006. Growth of the speckled swimming crab, Arenaeus
cribrarius (Lamarck, 1818) (Crustacea,
Brachyura, Portunidae),
in Ubatuba (SP), Brazil. Journal of
Natural History 40(21-22): 1331-1341.
Promya, J. & Chitmanat, C. 2011. The effects of Spirulina platensis
and Cladophora algae on
the growth performance, meat quality and immunity stimulating capacity
of the African sharptooth catfish (Clarias
gariepinus). Int. J. Agric. Biol.
13(1): 77-82.
Romano,
N. & Zeng, C. 2006. The effects of salinity on the survival,
growth and haemolymph osmolality of early juvenile blue swimmer crabs,
Portunus pelagicus.
Aquaculture 260: 151-162.
Seemann, U.B., Lorkowski, K., Slater, M.J., Buchholz, F. & Buck, B.H.
2015. Growth performance of Noble Crayfish Astacus
astacus in recirculating aquaculture
systems. Aquaculture International 23(4): 997-1012.
Sheen,
S.S. 2000. Dietary cholesterol requirement of juvenile mud crab
Scylla serrata. Aquaculture 189(3-4): 277-285.
Sheen,
S.S. & Wu, S.W. 1999. The effects of dietary lipid levels on
the growth response of juvenile mud crab Scylla serrata.
Aquaculture 175(1): 143-153.
Siddiquie, P.J.A., Akbar,
Z. & Qasim, R. 1987. Biochemical composition
and calorific values of the three edible species of protunid
crabs from Karachi [Pakistan]. Pakistan Journal of Scientific
and Industrial Research (Pakistan) 30(2): 119-121.
Takeuchi,
T., Satoh, N., Sekiya, S., Shimizu, T. & Watanabe, T. 1999.
The effect of dietary EPA and DHA on the molting rate of larval
swimming crab Portunus trituberculatus.
Nippon Suisan Gakkaishi 65(6):
998-1004.
Tal,
Y., Schreier, H.J., Sowers, K.R., Stubblefield,
J.D., Place, A.R. & Zohar, Y. 2009. Environmentally sustainable
land-based marine aquaculture. Aquaculture 286: 28-35.
Talpur, A.D., Memon,
A.J., Khan, M.I., Ikhwanuddin, M., Daniel,
M.M.D. & Abol-Munafi, A.B. 2011. A
novel of gut pathogenic bacteria of blue swimming crab Portunus
pelagicus (Linneaus,
1758) and pathogenicity of Vibrio harveyi
a transmission agent in larval culture under hatchery conditions.
Res. J. Appl. Sci. 6: 116-127.
Tina, F.W. & Darumas, U. 2014. Feed acceptability, survival and growth
performance of blue swimming crab (Portunus
pelagicus L.) fed with different cheaper diets. Multi-
Disciplinary Edu Global Quest (Quarterly) 3(1#9): 31-43.
Van Rijn, J. 1996. The potential for
integrated biological treatment systems in recirculating fish culture
a review. Aquaculture 139(3-4): 181-201.
Verdegem, M.C.J., Bosma,
R.H. & Verreth, J.A.J. 2006. Reducing
water use for animal production through aquaculture. Int. J.
Water Resour. Dev. 22: 101-113.
Vilasoa-M, M., López-Hernández,
J. & Lage-Yusty, M.A. 2007. Protein
and amino acid contents in the crab, Chionoecetes
opilio. Food Chemistry 103(4): 1330-1336.
Zohar, Y., Tal, Y., Schreier, H.J., Steven, C., Stubblefield, J. & Place,
A. 2005. Commercially feasible urban recirculated aquaculture: Addressing
the marine sector. In Urban Aquaculture, edited by Costa-Pierce,
B. Cambridge: CABI Publishing. pp. 159-171.
*Pengarang
untuk surat-menyurat;
email: sm_nurul@upm.edu.my
|