Sains Malaysiana 48(10)(2019): 2191–2199
http://dx.doi.org/10.17576/jsm-2019-4810-15
The Neuroprotective Effect of Nasturtium
officinale on Learning Ability and
Density of Parvalbumin Neurons in the Hippocampus of Neurodegenerative-Induced
Mice Model
(Kesan Neuropelindung Nasturtium officinale
pada Keupayaan
Pembelajaran dan Kepadatan Neuron Parvalbumin di
Hipokampus Model Tikus Teraruh Neurodegeneratif)
WARIT RUANGLERTBOON1,
EKKASIT
KUMARNSIT2,
SUKANYA
DEJ-ADISAI3,
URAPORN
VONGVATCHARANON4
& WANDEE UDOMUKSORN1*
1Department of Pharmacology,
Faculty of Science, Prince of Songkla
University, Hatyai, Songkhla
90110, Thailand
2Department of Physiology,
Faculty of Science, Prince of Songkla
University, Hatyai, Songkhla
90110, Thailand
3Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Prince of Songkla University,
Hatyai, Songkhla
90110, Thailand
4Department of Anatomy,
Faculty of Science, Prince of Songkla
University, Hatyai, Songkhla
90110, Thailand
Diserahkan: 14 Februari 2019/Diterima: 20 Ogos 2019
ABSTRACT
According to European traditional
pharmacopeia, as well as in Chinese traditional medicine, watercress
(Nasturtium officinale) has a property
in enhancing physical stamina during stress condition. The aim of
the study was to evaluate the neuroprotective effects of watercress
extract (WCE)
on dexamethasone-induced neurodegeneration in mice. Swiss albino
male mice (35-40 g) were divided into 6 groups: double distilled
water (DW)
and normal saline solution (NSS) (DW+NSS),
DW
and dexamethasone (DW+DEX)-treated for 21 days, 80
mg/kg of watercress extract (WCE) and NSS (80WCE+NSS),
and WCE-treated (14 days prior to and during dexamethasone treatment)
at variable doses of 20 mg/kg (20WCE+DEX),
40 mg/kg (40WCE+DEX), and 80 mg/kg (80WCE+DEX).
At the end of the experiment, animals were tested for spatial memory
and learning ability by Morris Water Maze apparatus to determine
the escape latency time (ELT), and the density of parvalbumin
(PV)-immunoreactive (PV-ir)
neurons in the hippocampus of the brain, using immunohistochemistry.
After dexamethasone treatment, the animals had significantly lower
body weight, higher ELT and reduced density of PV-ir neurons in the CA1 and CA2
regions of the hippocampus, compared to the control animals. These
parameters partially improved in animals supplemented with WCE but
without a dose-related pattern. This study suggests that WCE may
be beneficial for neuroprotection in stress-induced neurodegeneration.
Keywords: Hippocampus; Nasturtium
officinale; neurodegeneration; parvalbumin
neurons; spatial memory
ABSTRAK
Menurut farmakopeia tradisi Eropah dan perubatan
tradisi China, selada
air (Nasturtium
officinale) mempunyai
sifat dalam
meningkatkan stamina fizikal semasa keadaan stres. Tujuan kajian ini adalah
untuk menilai
kesan neuropelindung daripada ekstrak selada air (WCE) pada
deksametason-teraruh neurodegenerasi
pada tikus.
Tikus jantan Swiss Albino (35-40
g) telah dibahagikan
kepada 6 kumpulan: Air suling dua kali (DW)
dan larutan garam
biasa (NSS) (DW + NSS),
DW
dan deksametason
(DW
+ DEX)-dirawat selama
21 hari, 80 mg/kg daripada ekstrak
selada air (WCE) dan
NSS
(80WCE + NSS), dan
WCE-dirawat (14 hari sebelum dan semasa rawatan
deksametason) pada
pelbagai dos 20 mg/kg (20WCE + DEX),
40 mg/kg (40WCE + DEX), dan 80 mg/kg (80WCE
+ DEX). Pada akhir
uji kaji, haiwan telah diuji
untuk ingatan
ruang dan keupayaan
belajar menggunakan
perkakasan Lorongan Keliru Morris untuk menentukan waktu lepas kependaman (ELT),
dan ketumpatan
neuron parvalbumin (PV)-imunoreaktif
(PV-ir) pada hipokampus
otak menggunakan
imunohistokimia. Selepas rawatan deksametason, tikus mempunyai berat badan yang jauh lebih rendah,
ELT
lebih tinggi
dan kurang ketumpatan
neuron PV-ir di kawasan
CA1
dan CA2 hipokampus
berbanding dengan
tikus kawalan. Parameter ini sebahagiannya bertambah baik pada haiwan yang diberikan WCE tetapi
tanpa corak
yang berkaitan dengan dos. Kajian ini menunjukkan
bahawa WCE mungkin
bermanfaat untuk
neuropelindung dalam neurodegeneratif teraruh tekanan.
Kata kunci: Hipokampus;
ingatan
ruang; Nasturtium officinale; neurodegeneratif;
parvalbumin neuron
RUJUKAN
Almeida, O.F.X., Conde,
G.L., Crochemore, C., Demeneix,
B.A., Fischer, D., Hassan, A.H.S., Meyer, M., Holsboer,
F. & Michaelidis, T.M. 2000. Subtle
shifts in the ratio between pro-and antiapoptotic
molecules after activation of corticosteroid receptors decide neuronal
fate. Federation of American Societies for Experimental Biology
Journal 14: 779-790.
Ballard, C., Gauthier, S., Corbett, A., Brayne,
C., Aarsland, D. & Jones, E. 2011.
Alzheimer’s disease. Lancet
377: 1019-1031.
Ball, M.J. 1978. Topographic distribution of neurofibrillary tangles
and granulovacuolar degeneration in hippocampal
cortex of aging and demented patients. A quantitative study. Acta Neuropathologica
42(2): 73-80.
Behl, C.
1998. Effects of glucocorticoids on oxidative stress-induced hippocampal
cell death: Implications for the pathogenesis of Alzheimer’s disease.
Experimental Gerontology 33(7-8): 689-696.
Bergmann, I., Nitsch, R. & Frotscher, M. 1991. Area-specific morphological and neurochemical
maturation of non-pyramidal neurons in the rat hippocampus as revealed
by parvalbumin immunocytochemistry. Anatomy
and Embryology 184: 403-409.
Brown, E.S. 2009. Effects of glucocorticoids on mood, memory, and
the hippocampus treatment and preventive therapy. Annals of the
New York Academy of Sciences 1179: 41-55.
Caillard, O.,
Moreno, H., Schwaller, B., Llano, I.,
Celio, M.R. & Marty, A. 2000. Role of the calcium-binding
protein parvalbumin in short-term synaptic
plasticity. Proceedings of the National Academy of Sciences
97(24): 13372-13377.
Celio, M.R.
1986. Parvalbumin in most gamma-aminobutyric
acid-containing neurons of the rat cerebral cortex. Science 231(4741):
995-997.
Chrousos, G.P.
& Kino, T. 2009. Glucocorticoid signaling in the cell expanding
clinical implications to complex human. behavioral and somatic disorders.
Annals of the New York Academy of Sciences 1179: 153-166.
Coleman, P.D. & Flood, D.G. 1987. Neuron numbers and dendritic
extent in normal aging and Alzheimer’s disease. Neurobiology
of Aging 8(6): 521-545.
Cowan, R.L., Wilson, C.J., Emson, P.C.
& Heizmann, C.W. 1990. Parvalbumin-containing
GABAergic interneurons in the rat neostriatum.
Journal of Comparative Neurology 302(2): 197-205.
D’Hooge, R.
& De Deyn, P.P. 2001. Applications
of the Morris water maze in the study of learning and memory. Brain
Research Reviews 36(1): 60-90.
Filipović, D.,
Zlatković, J., Gass,
P. & Inta, D. 2013.The differential
effects of acute vs. chronic stress and their combination on hippocampal
parvalbumin and inducible heat shock protein 70 expression.
Neuroscience 236: 47-54.
Fogarty, M.C., Hughes, C.M., Burke, G., Brown, J.C. & Davison,
G.W. 2013. Acute and chronic watercress supplementation attenuates
exercise-induced peripheral mononuclear cell DNA damage and lipid
peroxidation. British Journal of Nutrition 109(02): 293-301.
Gill, C.I., Haldar, S., Boyd, L.A., Bennett,
R., Whiteford, J., Butler, M., Pearson,
J.R., Bradbury, I. & Rowland, IR. 2007. Watercress supplementation
in diet reduces lymphocyte DNA damage and alters blood antioxidant
status in healthy adults. American Journal of Clinical Nutrition
85(2): 504- 510.
Hu, W., Zhang, M., Czéh, B., Flügge, G. & Zhang, W. 2010. Stress impairs GABAergic
network function in the hippocampus by activating nongenomic
glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing
neuronal network. Neuropsychopharmacology
35: 1693-1707.
Hun Lee, J., Shu, L., Fuentes, F., Su, Z.Y. & Tony Kong, A.N.
2013. Cancer chemoprevention by traditional chinese
herbal medicine and dietary phytochemicals: Targeting Nrf2-mediated
oxidative stress/anti-inflammatory responses, epigenetics, and cancer
stem cells. Journal of Traditional and Complementary Medicine
3(1): 69-79.
Jeon, J., Bong, S.J., Park, J.S., Park, Y.K., Arasu,
M.V., Al-Dhabi, N.A. & Park, S.U. 2017. De novo transcriptome
analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.). BMC Genomics 18(1): 401.
Johnson, I.T. 2002. Glucosinolates in the
human diet. Bioavailability and implications for Health. Phytochemistry Reviews 1: 183-188.
Jothy, S.L.,
Zuraini, Z. & Sasidharan,
S. 2011. Phytochemicals screening, DPPH free radical scavenging
and xanthine oxidase inhibitiory activities
of Cassia fistula seeds extract. Journal of Medicinal
Plants Research 5(10): 1941-1947.
Kawata, M.
1995. Roles of steroid hormones and their receptors in structural
organization in the nervous system. Neuroscience Research 24(1): 1-46.
Liu, X.Y., Shi, J.H., Du, W.H., Fan, Y.P., Hu, X.L., Zhang, C.C.,
Xu, H.B., Miao, Y.J., Zhou, H.Y., Xiang, P. & Chen, F.L. 2011.
Glucocorticoids decrease body weight and food intake and inhibit
appetite regulatory peptide expression in the hypothalamus of rats.
Experimental and Therapeutic Medicine 2(5): 977-984.
McPhalen, C.A.,
Sielecki, A.R., Santarsiero,
B.D. & James, M.N. 1994. Refined crystal structure of rat parvalbumin, a mammalian alpha-lineage parvalbumin,
at 2.0A resolution. Journal of Molecular Biology 235(2):
718-732.
Morris, R. 1984. Developments of a water-maze procedure for studying
spatial learning in the rat. Journal of Neuroscience Methods
11(1): 47-60.
Murray, A.J., Sauer, J.F., Riedel, G., McClure, C., Ansel, L., Cheyne,
L., Bartos, M., Wisden, W. & Wulff, P. 2011. Parvalbumin-positive
CA1 interneurons are required for spatial working but not for reference
memory. Nature Neuroscience 14(3): 297-299.
Ng, T.P. 2016. Cognitive health of older persons in longitudinal
ageing cohort studies. Sains
Malaysiana 45(9): 1351-1355.
Ognjanovski, N.,
Schaeffer, S., Wu, J., Mofakham, S., Maruyama,
D., Zochowski, M. & Aton, S.J. 2017.
Parvalbumin-expressing interneurons coordinate hippocampal
network dynamics required for memory consolidation. Nature Communications
8: 15039.
Plogmann, D.
& Celio, M.R. 1993. Intracellular
concentration of parvalbumin in nerve
cells. Brain Research 600(2): 273-279.
Rashidy-Pour,
A., Sadeghi, H., Taherain,
A.A., Vafaei, A.A. & Fathollahi,
Y. 2004. The effects of acute restraint stress and dexamethasone
on retrieval of long-term memory in rats: An interaction with opiate
system. Behavioural Brain Research 154(1): 193-198.
Reagan, L.P. & McEwen, B.S. 1997. Controversies surrounding glucocorticoid-mediated
cell death in the hippocampus. Journal of Chemical Neuroanatomy
13(3): 149-167.
Shahrokhi, N., Hadad, M.K., Keshavarzi, Z. & Shabani, M.
2009. Effects of aqueous extract of water cress on glucose and lipis plasma in streptozotocin induced
diabetic rats. Pakistan Journal of Physiology 5(2): 6-10.
Sloviter, R.S.
1989. Calcium-binding protein (Calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus
with specific reference to the selective vulnerability of hippocampal
neurons to seizure activity. Journal of Comparative Neurology
280(2): 183-196.
Tongjaroenbuangam, W., Ruksee, N., Chantiratikul, P., Pakdeenarong, N., Kongbuntad, W.
& Govitrapong, P. 2011. Neuroprotective
effects of quercetin, rutin and okra (Abelmoschus
esculentus Linn.) in dexamethasone-treated
mice. Neurochemistry International 59(5): 677-685.
Tulipano, G., Taylor, J.E., Halem, H.A., Datta, R., Dong, J.Z.,
Culler, M.D., Bianchi, I., Cocchi, D.
& Giustina, A. 2007. Glucocorticoid inhibition of growth in
rats: Partial reversal with the full-length ghrelin analog BIM-28125.
Pituitary 10(3): 267-274.
Uabundit, N., Wattanathorn, J., Mucimapura, S.
& Ingkaninan, K. 2010. Cognitive enhancement
and neuroprotective effects of Bacopa
monnieri in Alzheimer’s disease model. Journal of Ethnopharmacology 127(1): 26-31.
Udomuksorn, W., Mukem, S., Kumarnsit, E., Vongvatcharanon, S. & Vongvatcharanon,
U. 2011. Effect of alcohol administration during adulthood on parvalbumin and glial fibrillary acidic protein immunoreactivity
in rat cerebral cortex. Acta
Histochemica 113(3): 283-289.
Verret,
L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos,
I., Ho, K., Devidze, N., Masliah,
E., Kreitzer, A.C., Mody,
I., Mucke, L. & Palop,
J.J. 2012. Inhibitory interneuron deficit links altered network
activity and cognitive dysfunction in Alzheimer model. Cell 149(3):
708-721.
Vongvatcharanon, U., Mukem, S., Udomuksorn, W., Kumarsit, E. & Vongvatcharanon,
S. 2010. Alcohol administration during adulthood induces alterations
of parvalbumin and glial fibrillary acidic protein immunoreactivity
in rat hippocampus and cingulate cortex. Acta
Histochemica 112(4): 392-401.
Voutsina, N., Payne, A.C.,
Hancock, R.D., Clarkson, G.J., Rothwell, S.D., Chapman, M.A. &
Taylor, G. 2016. Characterization of the watercress (Nasturtium
officinale R. Br.; Brassicaceae)
transcriptome using RNASeq and identification
of candidate genes for important phytonutrient traits linked to
human health. BMC Genomics 17: 378.
Woolley,
C.S., Gould, E. & McEwen, B.S. 1990. Exposure to excess glucocorticoids
alters dendritic morphology of adult hippocampal pyramidal neurons.
Brain Research 531(1-2): 225-231.
Yahaya, M.F., Zainodin, A., Pupathy, R., Min,
E.O.H., Bakar, N.H.A., Zamri, N.A., Ismail,
H. & Mohd Ramli, E.S. 2018. The effect
of palm tocotrienol on surface osteoblast and osteoclast in excess
glucocorticoid osteoporotic rat model. Sains
Malaysiana 47(11): 2731-2739.
Yazdanparast, R., Bahramikia, S. & Ardestan, A.
2008. Nasturtium officinale reduces
oxidative stress and enhances antioxidant capacity in hypercholesterolaemic
rats. Chemico- Biological Interactions
172: 176-184.
Yun,
S.J., Lee, D.J., Kim, M.O., Jung, B., Kim, S.O., Sohn,
N.W. & Lee, E.H. 2003. Reduction but not cleavage of poly (ADP-ribose)
polymerase during stress-mediated cell death in the rat hippocampus.
NeuroReport 14(7): 935-939.
*Pengarang untuk surat-menyurat; email: wandee.u@psu.ac.th
|